(A)
-6

NaVAL POSTGRADUATE SCHOOL Monterey, California

Approved for public release; distribution is unlimited.

T234152
$1+\quad 1 \mathrm{n}$ na
$254 x^{2} 5!$

1S REPOMI SECURIIY (LAS)IFMCAIION UNCLASSIFIED		10 Resimiclive manainus			
Is SECURIIY CLASSIFICATIUN AUlIIORITY		```3 DisimiduliuN/Avalmaluly Of HEPORT Approved for public release; distribtuion is unlimited.```			
20 UELLASSIFICAIMN/ UUWNGRADING SCH					
	(is)	3 Muniluminu uhuanicaliun hepuhi numderis)			
os name or perturmirig orgainization Naval Postgraduate School	OD URFICE SYMBOL (If Jnnlimble) 62	1d NAME OF MUNITURING ORGANIZAIION Naval Postraduate School			
x adoress icity. State, and IIP Code) Monterey, California 93943-5000		Io ADORESS (Cily. State. ana IIP Code) Monterey, California 93943-5000			
30 Mame of furvinui/sponsoring ORGAPHEATION	80 OFFICE SYMBOL (if anplicable)	9 Procurement instrument identification number			
IS AUDRESS(City Seate, and LIP (ade)		10 Solirce of flindiru mumbers			
		phogram ELEMENT NO	$\begin{aligned} & \text { PRO.ECT } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO } \end{aligned}$	NORA UNIT ACCESSION NO

1 lifle finciude Security (lassification)
Three - Dimensional Image Generation from an Aerial Photograph
2 PERSONAL AUTHOR(S)
it. Leland G. Coleman

| 3a TYPE OF REPORT
 Iaster's Thesis | IJb TIME COVERED
 FROM | 14 DATE OF REPORT (Year, MONED. Day) | IS PAGE COUNT |
| :--- | :--- | :--- | :--- | :--- |
| 106 | | | |

亏 SUPPLEMENTARY NOTATION

18 SUBIECT TERMS (COntinue on reverse if necessary and dentity by block number)
3-D Image Generation, Photogrammetry
ABSTRACI (Continue on reverse if necessary and identity by block number)
This thesis concerns developing a program that takes an aerial photograph, and a set
Digital Terrain Elevation Data (DIED) that is defined over the area of a photograph, id generates a synthesized view that represents what a camera would see from a different ,cation. The elevation data points are grouped into triangular panels that are projected , the reference image by three dimensional transformation equations. Shading for the synlesized image is determined from the reference image. The pixels of the reference image at fall within a triangular panel are collected and averaged. When a new observer ,cation is selected, the panels are projected to the new synthesized image plane. A -buffer approach and a polygon fill algorithm were used to remove hidden surfaces of the nthesized view.

This program is tested on both artificial and real data. Other characteristics and rformance measurements of the program are also analyzed here. The quality of the synthesized age from real data was affected by the low resolution of the terrain elevation data,

DISTRGJIORIAVAILABILITY OF ABSTRACT © Jicriassifiedunalimited \square sAME AS RPT DTIC USERS	21 ABSTRACT SECURITY CLASSIFICATION Uncłassified	
a davie ofr aresrofosiete lidividual Chin H 。 Lee	220 IEbEPHONE (include Alea (oade) $408-646-2190$	$\begin{gathered} 22 \mathrm{OFEGE} \text { SYMBOL } \\ 62 \text { Le } \end{gathered}$

and yielded less cesiraole results than could be expected of a hicher resolution terrain model.

```
Three - Dimensianal Image Generation
    from an Aerial Photograph
```

bu
Leland G. Coleman Lieutenant, United States llavy SS Electrical Engineering University of washington

```
Submitted in partial Eulfillment of the
    requirments for the degree of
```

MASTER OF SCIENCE IN ELECTRICAL ENEINEERING

> from the

NAUAL PDSTGRADUATE SCHOOL September 199^{-}

ABSTRACI

This thesis concerns developing a program that takes an aerial photograph, and a set of Digital Terrain Elevation Data (DTED) that is defined over the area of the photograph, and generates a synthesized view that represents what a camera would see from a different location. The elevation data points are grouped into triangular panels that are projected to the reference image by three dimensional transformation equations. Shading for the synthesized image is determined from the reference image. The pixels of the reference image that fall within a triangular panel are collected and averaged. When a new observer location is selected, the panels are projected to the new synthesized lmage plane. A z-buffer approach and a polygon fill algorithm were used to remove hidden surfaces of the synthesized view.

This program is tested on both artificial and real data. Other characteristics and performance measurements of the program are also analyzed here. The quality of the synthesized image from real data was affected by the low resolution of the terrain elevation data, and yielded less desirable results than could be expected of a higher resolution terrain model.
I. INTRODUCTIDN 10
A. COMPUTER IMAGE GENERATIDN FROM AERIAL PHOTOGRAPHY 10
B. TERRAIN ELEUATION aND Photggraph AS INPUIS 12
C. ALGDRITHM ISSUES 13

1. Grey Scale Referencing 13
2. Hidden Surface Elimination 14
3. Polygan Fill Algarithm 15
II. PHOTOGRAPHIC GEOMETPY 17
A. BACKGROUND 17
4. Perspective and Parallel Projection 17
5. Image Coordinate Space 18
6. Object Coordinate Space 19
B. Image plane rotation 19
III. ALGORITHM CONSIDERAIIDNS 25
A. Reference image Data 25
7. Dbject to Reference Image Transformation 27
8. Reference Image to Screen Coordinate Transformation 28
9. Synthesized Image Plane Rotation 30
B. TEPRAIN DAIA 33
10. Data Verıficatıon 33
11. Elevation Line Drawing 35
C. SPECIFIC ALGORITHMS 38
12. Image Referencing Algoritm 38
13. Polygon Fill and Hidden Surface Elimination 41
D. SUMMARY 47
IU. CONCLUSIONS 53
A. GENERAL 53
B. GREY SCALE CORRELATION 54
C. PROGRAM SPEED AND FLEXIBILITY 55
APPENDIX A: PROGRAM SUMMARY 58
APPENDIX B: PROGRAM LISTING 89
LIST OF REFERENCES 104
INITIAL DISTRIBUTION LIST. 105

LISI OF IABLES

1. CPU TIME CONSUMPIION (IN SECONDS). 56
2.1 Image Plane Coordinates 20
2.2 Object Plane Coordinates 20
3.1 Synthesized Image Plane Coordinates 31
3.2 Elevation Image 35
3.3 Elevation Line Drawing 37
3.4 Artıficial Reference Image 37
3.5 Iriangular Panel Data File Structure 40
3.6 Active Edge List Storage 45
3.7 Artificial Synthesized Image 1 49
3.8 Artificial Synthesized Image 2 49
3.9 Artificial Synthesized Image 3 50
3.10 Reference Image 50
3.11 Synthesized Image 1 51
3.12 Synthesized Image 2 51

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my Thesis Advisor, Dr. Chin-Hwa Lee, for his guidance and counsel in assisting in the completion of this Thesis.

I would also like to thank Dr. Mitchell L. Cotton and others who contributed their assistance in the accomplishment of this Thesis.

Finally, I wish to express my gratitude to my wife, Cynthia L. Coleman, who helped and supported me through these laborious times to achieve this educational goal.

I. INTRODUCTION

A. COMPUTER IMAGE GENERATION FROM AERIAL PHOTOGRAPHY The main objective of this study was to develop a program that takes a digital photographic image and a Eile of terrain elevation points defined over that image as input, then produces as an output a synthesized perspective view. The synthesized view is a ratated 3-dimensianal (3D) perspective representation of the original photographic image. The main application of this study is to generate a different perspective of a terrain model. This may be used to generate different views that a pilot of an aircraft could expect Eallawing different Elight paths through the same area. Further study may make it feasible to generate synthesized images Fast enough to simulate a real time image display of a Elight for a mission briefing or to be used as a training aid. Another application could be for training men on optically guided missiles. With high resolution images, a Elight path through a battlefield could be simulated that would have all the visual characteristics of an actual flight without the expenditure of a live missile. The generation of a shaded lmage as a 3 D picture provides unique prablems Eor 3 D graphic displays. The data which comprises a photographic image consists of an array of prxels, each of which has a defined grey level or shade.

There are 256 different levels of grey that may be assigned to a pixel. This study concerns taking a photographic perspective image and a 2-dimensional (2D) array of elevations defined in a grid covering the area of the image as inputs. The grid of elevations, called the terrain model, is geometrically related to the photographic image through a perspective projection transfarmation that equates the world coordinates of the elevation points to the object coordinates of the image. A synthesized image from a different observer location is then generated. The new synthesized view should approximate what would be seen by a camera from the new observer position.

The differences between the original and synthesized images will be affected by the resolution of both the photographic 1 mage and the terrain models. Higher resolution of the original models will result in a closer approximation in the synthesized image. Another complication or ambiguity arises when details which should show up in the synthesized view were not present in the original image. A method must be dewised so that it can fill in areas mhich become visible in the synthesized image that were hidden in the original reference image. The solution to this hidden surface problem is further addressed in the discussion of the grey scale referencing algorithm.[Ref. 1]

B. TERRAIN ELEUATION AND PHOTOGRAPH AS INPUTS

In this study a high altitude aerial image of Moffett Field, California was used as the original reference photograph. The photographic image was supplied by the Defense Mapping Agency (DMA) and had a resolution of approximately 1 meter per pixel. The terrain model corresponding to the reference image was provided as Digital Terrain Elevation Data (DTED) by the DMA and consisted of elevation points taken every second of a degree change in latitude and longitude. This gives an approximate resolution of 30 meters per elevation point in a north-south direction and 23 meters per elevation point in an east-west direction.

The synthesized view was restricted to a northerly direction which simulates an aircraft flying from south to north with the image plane perpendicular to the direction of Elight. Io allow for different Elight patterns would require development of an algorithm that would provide for rotation of the image coordinates which is beyond the scope of this study. The main idea is to generate a synthesized view that is rotated from the original photograph by approximately 90° and explore the concepts of the algorithms required to do this. Although speed was not a major issue, the size of the terrain model was limited to a 50×50 grid array, or 2500 data points, to minimize the time for synthesized image generation.
C. ALGORITHM ISSUES

1. Greu Scale Referencing

To determine the grey scale values of the pixels that make up our synthesized view, the terrain model is first divided into triangular panels. The vertices of the triangular panels are then mapped into the original DMA image using the perspective projection transformation that projects georectangular coordinates into reference image coordinates. The plxel grey scale values that fall within the projected triangular panel are then averaged. The average grey scale value is permanently assigned to that particular panel. When the synthesized image is constructed the triangular panel is mapped to the new image view and filled with the assigned average grey scale value. In this way the sample of pixels that fall within the triangular panel are mapped from the original reference image to the synthesized image. This method of mapping the triangular panels to the synthesized image also solves the problem of assigning a grey scale value to hidden surfaces of the reference image because they are automatically assigned the value of the surrounding pixels. Since the average grey scale value for a triangular panel is dependant upon the resolution of the terrain model, the grey scale value assigned to the hidden surface will also be affected [Ref. 1].

The smaller the triangular panels are, the smaller the area that must be collected and averaged in the original image. This means a much better synthesized view can be constructed that contains more of the attributes of the original image. For this reason the resolution of the terrain and reference image model is very critical to obtaining an accurate synthesized view. Using the resolution of the terrain and image models used in this study, the approximate number of pixels that must be averaged in the reference image for each triangular plane would be $1 / 2$ (30 m x 23m)(1 pixel/m) $=345$ pixels. This is very coarse and does not allow for optimal generation of the synthesized view.

2. Hidden Surface Elimination

There are surfaces that may be discernible in the reference image but become hidden in the synthesized view. The z-buffer algorithm was used to accomplish the hidden surface elimination. The z-buffer is an array that contains the depth or distance to the observer location for each pixel that is to be visible in the synthesized image. As each triangular plane is mapped to the synthesized view the location and depth of each pixel within the plane is determined. The depth of the pixel to be written at a certain location is compared to the depth of any pixel that may have been previously written to the same location. If the depth or distance of the new pixel to the observation
point is shorter than the previous pixel, its depth 15 written to the z-buffer and the grey scale value of the pixel is placed into the synthesized image. If the depth is larger, no updating occurs and a new pixel is obtained in the process. The z-buffer works very closely with the next algorithm to be considered. [Ref. 2, pp. 265-267]

3. Polugon Fill Algorithm

Screen coordinates are generated for the three vertices of each triangular panel as it is mapped to the synthesized image. Screen coordinates are designated as IA and JA values with the IA values representing the columns and the $J A$ values the rows. The location, IA, JA(O,O), designates the upper left hand corner of the screen and the maximum screen coordinate, IA,JA(512,512), the lower right hand corner. An active edge list (AEL) is generated by computing a line between each of the translated vertices. For each line, the IA coordinate corresponding to the maximum JA value of the line, the amount IA changes for each one unit step of JA, and the total span of JA are stored into the AEL. The three lines generated for each translated triangular plane will form another closed triangle. By using the parameters stored in the AEL the location of pixels enclosed by the translated triangular plane can be determined, and the corresponding array points within a frame buffer are changed from a 0 to a 1.
[Ref. 2, pp. 76-79]

After all of the enclosed pixels have been marked within the frame buffer, the buffer is scanned row by row. If a value of 1 is found, then the depth is calculated for that point and compared with the depth value stored in the z-buffer. If the depth value is smaller, that pixel is located closer to the observer location and the grey scale value for that pixel is written to the synthesized image file. As can be seen the fill and hidden surface algorithms work together to generate the new image. The implementation of these algorithms are explained in further detail later.

In Chapter II there will be a discussion of basic photographic geometry to develop an understanding of the transformation equations necessary to map object coordinates into image coordinates and for image plane rotation. Chapter III will detail program considerations based on image and elevation data as well as the algorithms used to generate the synthesized view. Chapter IU will discuss possible ways to improve the transformation program and discussion of topics for possible further study. An outline of the program is contained in Appendix A that gives a short discussion of each subroutine as to its purpose, input and output, modules that called, and modules that reference the subroutine. Appendix B contains the entire 30 transformation program.

II. PHOTOGRAPHIC GEOMEIRY

A. BACKGROUND

To understand many of the concepts used in this study, a basic background in photographic geometry is presented. The relationship between the image space and object space is the basis for many of the equations that help to generate the reference and synthesized images for visual display. The objective of this chapter is to present the concepts that allow the transformation of 30 objects to a 20 image and the parameters evolved.

1. Perspective and Parallel Prolection

A parallel projection is a projection in which the projection lines from the object to the image plane never converge. When an object is viewed by parallel projection, its size would never change as the camera is moved closer or further away. In contrast, a perspective projection has all the projection lines from an object converge to a perspective center. A perspective projection imitates how we see things. An example would be a picture of railroad tracks. The tracks would appear to become closer together when further away from the observation point. In a parallel projection the tracks would be the same distance apart along the entire length. [Ref. 3, pp. 133-134]

Since a camera 15 generally designed to photograph a rather large area, it involves perspective projection. The
camera view represents what an abserver would see standing at the same location, and the images generated are perspective images. Ihis means that the equations used to transForm the object space into the image space must be perspective transformations.

2. Image Coordinate Space

The image plane is the plane of the photograph to which the abject paints are mapped. It has a $2 D$ cordinate system to which each point of a 3 D object is translated to (Fig. 2.1). Ihe indicated principal point (IPP) is the center of the image plane and has the coordinates of $(x, y, 0) . \quad T h e x, y$, and z axis $x e p r e s e n t ~ a ~ r i g h t ~ h a n d e d ~$ plane and the perspective center (L) lies along a line parallel to the $z-a \times 15$; then a perpendicular line is drawn Erom L to the image plane. The point at which this perpendicular line intersects the image plane is called the princlpal paint (a). Ihis offset of the principal paint From the IPP is compensated for in the transfarmation equations by xo and yo. Ihe Eacal length of the plane is defined as the distance From the principal point to the perspective center. For the image plane caordinate system, each abject point (A) is graphed to a corresponding image plane point (a) located at (xa,ya,O), and the perspective center or focal point is located at (xo,yo,f). [Ref. 3, pp. 135-136]

In generating a synthesized view, the perspective center may be placed at any location desired with reference to the image plane. It is therefore desirable to select a point along the z-axis such that $x o$ and yo become 0 . This will decrease the number of calculations required in generating the synthesized view.

3. Object Coordinate Space

The observer location and each object point position is described in warld coordinates, called gearectangular coordinates, of X, Y, and Z. The center of the earth is given as ($0,0,0$), the Z-axis points directly to true north, the X-axis paints to the intersection of 0° Latitude and 0° Longitude, and the Y-axis the intersection of 0° Latitude and 90. E. Longitude. The principal or Eocal point that would describe the observer location in gearectangular coordinates is $X L, Y L$, and $Z L$. Each object point (A) located in the object space is identified by $X A, Y A$, and $Z A$ as shown in Figure 2.2. [ReF. 3, P. 136]

B. Image plane rataiton

To align the x, y, z coordinates of the image plane to the desired viewing direction requires ratation about the X, Y, and Z axis of the georectangular coordinate system. In general to transform one $3 D$ coordinate system requires a matrix multiplication of the form $A=[M] B$. The A represents a vector in the image space with x, y, and z coardinates, and B is a vector in the georectangular coordinate

Fig. 2.1 Image Plane Coordinates (Ref. 3, p. 135)

Fig. 2.2 Object Plane Coordinates (Ref. 3, p. 136)
system with X, Y, and Z components. This may be written as

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & E \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

(2.1)
where

$$
M=\left[\begin{array}{lll}
a & b & c \tag{2.2}\\
d & e & f \\
g & h & 1
\end{array}\right]=\left[\begin{array}{lll}
\cos x X & \cos x Y & \cos x z \\
\operatorname{cosy} X & \cos y Y & \cos y z \\
\cos z X & \cos z Y & \cos z Z
\end{array}\right]
$$

This maps the vector X, Y, Z to the image space x, y, z. The M matrix is derived from the definition of the direction of a vector A given by

$$
\begin{align*}
\frac{A}{|A|} & =\cos \hat{i}+\cos \beta \hat{j}+\cos \tau \hat{k} \\
& =\frac{A x}{|A|} \hat{i}+\frac{A y}{|A|}+\hat{\jmath} \frac{A z}{|A|} \hat{k} \tag{2.3}
\end{align*}
$$

where $\hat{i}, \hat{\jmath}$, and \hat{k} are unit vectors of the particular coordinate system in which vector A is contained. The quantities α, β, τ are the angles that vector A makes with the x, y, and z-axis respectively. Since there are three vector components in the X, Y, Z system, each one must make its own transformation into x, y, and z and thereby forming the 3×3 matrix of M. To translate x, y, z into X, Y, Z
the inverse of the M matrix is taken giving $\mathbf{B}=[M]^{-1} \mathbf{A}$. [Ref. 3, p. 139]

If we can define three orthogonal vectors in georectangular coordinates as \mathbf{R}, \mathbf{S}, and \mathbf{I} that would describe the desired viewing position of our image plane, the M matrix is easily derived by

$$
M=\left[\begin{array}{ccc}
\frac{S x}{|S|} & \frac{S y}{|S|} & \frac{S z}{|S|} \\
\frac{R x}{|R|} & \frac{R y}{|R|} & \frac{R z}{|R|} \\
\frac{I x}{|I|} & \frac{I y}{|I|} & \frac{I z}{|I|}
\end{array}\right]
$$

Generally the image plane rotation is expressed in omega (w), phi (w), and kappa (k). The wis the rotation about the X-axis, the is rotation about the Y-axis, and k is about the Z-axis. If we rotated first about the X-axis by an angle of w radians, the terms of the M matrix would equate as Eollows

$$
\begin{aligned}
& \operatorname{Cos} x X=\cos \left(0^{\circ}\right)=1 \\
& \operatorname{Cos} y Y=\cos (w) \\
& \operatorname{Cos} y z=\cos \left(90^{\circ}-w\right)=\sin (w) \\
& \operatorname{Cos} z Y^{\prime}=\cos \left(w+90^{\circ}\right)=-\sin (w) \\
& \cos z Z=\cos (w)
\end{aligned}
$$

All other terms equate to $\cos 90^{\circ}=0$, therefore the M matrix becomes

$$
M=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (w) & \sin (w) \\
0 & -\sin (w) & \cos (w)
\end{array}\right]
$$

Similarly a rotation © about the Y-axis produces

$$
M=\left[\begin{array}{ccc}
\cos (\Phi) & 0 & -\sin (\Phi) \\
0 & 1 & 0 \\
\sin (\Phi) & 0 & \cos (\Phi)
\end{array}\right] \quad(2.6)
$$

and for a rotation k about the Z-axis

$$
M=\left[\begin{array}{ccc}
\cos (k) & \sin (k) & 0 \\
-\sin (k) & \cos (k) & 0 \\
0 & 0 & 1
\end{array}\right](2.7)
$$

By multiplying all three matrices together we derive the overall M transform in $w, ~ \Phi$, and k,

$$
\left.\begin{array}{c}
\operatorname{Sin}(w) \operatorname{Sin}(k)-\operatorname{Cos}(w) \operatorname{Sin}(\Phi) \operatorname{Cos}(k) \\
\operatorname{Sin}(w) \operatorname{Cos}(k)+\operatorname{Cos}(w) \operatorname{Sin}(\Phi) \operatorname{Sin}(k) \\
\operatorname{Cos}(w) \operatorname{Cos}(\Phi)
\end{array}\right]
$$

(2.8)

This is the general form of the matrix that maps the georectangular coordinates to the image plane. [Ref. $3, \mathrm{pp}$. 597-600]

The general form of the transformation matrix is used to initially map the elevation terrain model into the original reference image. The $w, ~ \Phi, ~ a n d ~ k$ were supplied with the original DMA photograph and represents the rotation of the reference image plane with respect to the georectangular coordinates at the time the picture was taken. When we generate the synthesized view the image plane must be rotated to the desired viewing angle of the observer (northerly direction in particular). This means that a new ω, Ф, and k must be calculated, or by defining new image plane coordinate axes in terms of the georectangular coordinates, we can calculate the terms of the M matrix directly using the preceding equations. This is discussed further in the next chapter.

III. ALGORIIHM CONSIDERAIIDNS

In this chapter an in-depth analysis of the original image and terrain data is presented. This includes how the data was referenced, the size of the data files, how the data was used, and how the elevation and image data compared with ane another. The pracess of translating from the object space coordinates to image space coordinates and then to screen coordinates is considered, and the equations used are given.

The referencing, fill, and z-buffer algorithms also are discussed in detail. How the data generated from these algorithms is used and put together to produce the synthesized view will be presented. Any problems that were encountered and the eventual solutions will be discussed in the appropriate section to which they pertain.
A. REFERENCE IMAGE DATA

The picture of Moffett Field supplied by the Defense Mapping Agency (DMA), was 4999 by 4997 pixels in size and came with both a left and right image. Only the left image was used to generate the perspective views in this study. Each individual pixel within the original image is designated by coordinates I and J, where I is the pixel colum and J is the scan row. The geographic northeast corner has
the I, J coordinates of (0,0), and the southwest corner (4997, 4999).

The image display devices used were capable of displaying images that were only 512 by 512 pixels in size, therefore, the original image was divided into appropriate blocks suitable for viewing called frames. Each frame contains an image that is 512 by 512 pixels. The coordinates of each frame has a Equr digit I_Frame and J_Frame value, and is further identified as a left or right (L or R) image. The I Frame and J.Frame coordinates are designated in multiples of 512 which define the column and row location of each frame. There are 10 frame columns and 10 frame rows with assigned coordinates of 0000 through 460日. To identify a particular frame of the DMA image one Eirst designates whether it is a Left or Right image and then give the I Frame and J Frame coordinates. As an example LOS121024 would designate a Left image from the second column and third row. The first frame L00000000 starts in the southeast corner and the last frame L4608460日 is in the northwest corner. The disparity between the starting location of the frame coordinates and the I and J coordinates of the original image must be compensated for in the equations that are used to determine the location of individual pixels within a frame image as shown later.

1

 Qbject to Reference Image Iransformation Every object point is converted from its $3 D \mathrm{X}, \mathrm{Y}$, and 2 georectangular coordinates into the $2 D \times$ and y image coordinates using the $A=[M J B$ equation discussed earlier. The vector from the perspective center to each object point is defined by (XA-XL), (YA-YL), and (ZA-ZL). This vector is mapped into the reference image plane coordinates of x, y, and z. Since every vector in the 1 mage plane is directed from the perspective center or focal point to the image point (a), the z coordinate value is constant and equal to the negative of the focal point (-f) of the camera. Using these parameters the equation becomes$$
\left[\begin{array}{c}
x-x a \tag{3.1}\\
y-y o \\
-f
\end{array}\right]=K\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
X A-X L \\
Y A-Y L \\
Z A-Z L
\end{array}\right]
$$

where K is a scale factor. From this transformation the following equations are obtained

$$
\begin{aligned}
x-x a & =K[a(X A-X L)+b(Y A-Y L)+c(Z A-Z L)] \\
y-y 0 & =K[d(X A-X L)+e(Y A-Y L)+f(Z A-Z L)](3.3) \\
-f & =K[g(X A-X L)+h(Y A-Y L)+i(Z A-Z L)](3.4)
\end{aligned}
$$

Dividing the last equation into the first two and rearranging yields

$$
\begin{align*}
& x=x 0-E\left[\frac{a(X A-X L)+b(Y A-Y L)+c(Z A-Z L)}{g(X A-X L)+h(Y A-Y L)+i(Z A-Z L)}\right] \tag{3.5}\\
& y=y 0-E\left[\frac{d(X A-X L)+E(Y A-Y L)+c(Z A-Z L)}{g(X A-X L)+h(Y A-Y L)+i(Z A-Z L)}\right]
\end{align*}
$$

where x and y are the $2 D$ image plane coordinates.[Ref. 3, pp. 141-142J

The original parameters of the M matrix were calculated from the $w, ~(\mathbb{Q}$, and k that were given by the DMA with the original photograph. These represent the physical position of the image plane in relation to the georectangular coordinate system at the time the picture was taken. The focal point was also supplied and is particular to the camera that was used to take the original photograph. When the synthesized image is generated, the image plane is oriented to a position for the desired viewing angle, which means that the parameters of the M matrix will change and must be recalculated. The steps used to determine the desired orientation of the image plane coordinates will be discussed later in this chapter.
2. Reference Image to Screen Coordinate Iransformation Once the x and y image coordinates have been calculated they are translated to I and J values of the
original image. Ihis is accomplished using the affine transform which represents a 2 D into 2 D coordinate transformation. The equation that accomplishes this is derived from

$$
\left[\begin{array}{l}
x \tag{3.7}\\
y
\end{array}\right]=\left[\begin{array}{ll}
j & k \\
1 & m
\end{array}\right]\left[\begin{array}{l}
I \\
J
\end{array}\right]+\left[\begin{array}{l}
\text { ci } \\
{[2}
\end{array}\right]
$$

where C1 and C2 are the values that translate the image plane origin to the I and J coordinate system origin. They are calculated by setting I and J to O and solving for x and y. To get the desired transformation of the image coordinates to I and J coordinates the inverse transform is taken. [Ref.3, p.593]

$$
\left[\begin{array}{l}
I \tag{3.8}\\
J
\end{array}\right]=\frac{1}{j m-k 1}\left[\begin{array}{rr}
m & -k \\
-1 & j
\end{array}\right]\left[\begin{array}{l}
x-c 1 \\
y
\end{array}\right]
$$

Again the original $J, k, l, m, C 1$, and $c 2$ were supplied by the DMA with the original image. Equation 3.8 represents any general $2 D$ into $2 \square$ transformation, and it is used both to translate the original image plane coordinates into the I and J coordinates of the reference image and to transform the image plane coordinates of the synthesized view into screen coordinates of IA, and JA.

The screen coordinates were assigned the parameters IA, which represents the columns, and JA, which represents the rows. The point IA,JA(1,1) is mapped to the upper left
corner of the screen and IA, JA(512,512) is the lower right corner.

The screen coordinates represent the location of a pixel within a frame. Io convert I and J original coordinates to IA and JA screen coordinates one needs to know the particular frame one is warking in and compensate for the difference in the starting location of the frame coordinates and the original image coordinates. Ihis is accomplished by using the following equations,

$$
\begin{array}{ll}
I A=(I-I \text { Frame }) & (3.9) \\
J A=(4999-J \text { Frame }-J) & (3.10)
\end{array}
$$

The I Frame and J Frame values must therefare be given to determine the screen coordinates within a desired Erame. Io allow Elexibility in determining which Erame image would be used to extract the reference image, an interactive input of the I Frame and J Frame coordinates was appropriate.

3. Sunthesized Image Plane Rotation

For the synthesized views that were generated, the affine transform parameters $\mathrm{C} 1, \mathrm{C己}, \mathrm{~J}, \mathrm{k}, \mathrm{l}$, and m that would map the newly rotated image plane into the screen coordinate system were selected. Since the image planes in the synthesized views were oriented for an observer loaking north, the image plane coordinates were generated by calculating the z-axis, which points south, from two gearectangular coordinate vectors calculated from two different
terrain data points along the same longitude line. By taking the difference between the X, Y, and Z coordinates a third vector was formed that defined the image plane z-axis. The image plane y-axis was calculated by using only one of the terrain data points used to calculate the z-axis. By taking the negative of the georectangular coordinates of the terrain data point, a vector is produced that points downward through the center of the earth. This was the image plane y-axis. Once the z and y axes are calculated, the cross product of y cross z was used to calculate the x-axis. Figure 3.1 demonstrates the resulting image plane.

z

Fig. 3.1 Synthesized Image Plane Coordinates

This image plane coordinate system, from the observers perspective at ($0,0,-E$), would have the x-axis pointing left, the y-axis pointing down, and the z-axis pointing directly toward the observer. The screen
coordinates have the IA axis pointing right and the JA axis pointing down. Therefore, the new values of C1 and C2 with IA, and JA equal to O were as follows:

$$
\begin{aligned}
& C 1=\text { Maximum assigned } x \text {-image value } \quad(3.11) \\
& C 2=0
\end{aligned}
$$

which aligned the image plane $x, y(a, 0)$ to the screen coordinates of $I A, J A(O, O)$. The $j, k, l, a n d m$ values of the transformation matrix were selected to scale the image plane to the screen.

Having determined the three synthesized image plane coordinate vectors in terms of georectangular vectors, it is relatively easy to generate the M matrix parameters using

$$
M=\left[\begin{array}{ccc}
\frac{S x}{|S|} & \frac{S y}{|S|} & \frac{S z}{|S|} \tag{3.13}\\
\frac{R x}{|R|} & \frac{R y}{|R|} & \frac{R z}{|R|} \\
\frac{I x}{|I|} & \frac{I y}{|I|} & \frac{I z}{|I|}
\end{array}\right]
$$

were S, R, and I are the georectangular coordinate vectors of the x, y, and z axes of the rotated image plane. This defines the new transformation matrix that will be used to generate the synthesized view by mapping the georectangular vectors of the terrain data into the new image plane.
B. TERRAIN DATA

The Digital Terrain Elevation Data (DIED) supplied by the DMA came as a rectangular grid of elevation data points. Each elevation data point was recarded as an integer value in meters above sea level. If a particular elevation point was unknown, it was assigned a value of -32767 to assure that it wauld not be confused with any valid elevation data points. The rectangular terrain grid listed elevation points every one second of a degree change in latitude and longitude. The southwest corner of the terrain grid was defined as being located at 37° 22' $47^{\prime \prime}$ N. latitude and -122• 05' 03" W. longitude. From this reference point the elevation data was laid out in 210 rows by 239 columns. The rows represented lines of constant latitude and the columns lines of constant longitude. With this information the northeast corner of the terrain grid was calculated as being located at $37^{\circ} 26^{\prime} 17^{\prime \prime} N$. latitude and $-12201^{\prime} 04^{\prime \prime} W$. langitude.

1. Data Verification

The first problem was to compare how accurately the elesation data matched up with the original image data. This required taking specific elevation points that were known to match specific image points, then translating the georectangler coordinates of those elevation points to the I and J coordinates for comparison to the original image. The ω, , and k Eor the M matrix to transform georectangular to
image plane coordinates and the parameters for the affine transform from image plane to original image I and J coordinates were supplied by the DMA with the original image data.

Ta select specific elevation points Ear comparison required finding a method of distinguishing unique elevation patterns that could match specific objects in the image. The technique used was to visually display the elevation data as an image. The elevation image file was produced by assigning grey scale values to each elevation data point with the lower elevations receiving the darker shades and the higher elevations the lighter shades. When the elevation image was displayed as shown in Figure 3.2, a distinct highway pattern emerged from which three intersections could reasonably be distinguished. The three intersection points (shown as a, b, and $c i n F i g .3 .2)$ correspond to elevated roads that crossed one another in the original image.

Once the elevation paints were selected far comparison, the approximate row and column of the elevation data corresponding to the center of the intersections was determined. From the reference point of the terrain grid there is a 1 second change in latitude and longitude for each row and column which allowed the calculation of the latitude and longitude for each of the three reference elevation points. The latitude and longitude for each point was converted to georectangular coordinates using a
conversion program, then transformed to I and J coordinates using the provided DMA parameters as explained earlier. Each of the three elevation points mapped to within 10 pixels of the original image in both the I and J coordinate directions. This equates to less than 1 second error in latitude and longitude which was deemed precise enough to establish the correlation between the terrain and image data.

Fig. 3.2 Elevation Image

2. Elevation Line Drawing

By selecting a smaller area of the DIED data, a more distinct picture could be studied. An intersectian used to verify image and elevation correlation was selected to be used as the reference image. A smaller rectangular set of
terrain data that would map to the intersection, plus a small section of the surrounding area, was extracted from the reference terrain grid. This smaller set of terrain data was taken from rows 71 through 79 and columns 172 through 183 of the terrain model.

To verify that this set of elevation points would appear like the desired reference image, a line drawing illustrated in Figure 3.3 was created using a commercial graphics program called MOUIE.BYU (Ref. 4). This program can generate a connected line drawing from a set of elevation data and allows rotation as well as magnification of the drawing. To assure a sharp visual contrast, the elevation data was magnified by a factor of 10 and the drawing rotated to a useful viewing angle.

The results were not as desired which gave an early indication that the resolution of the terrain data may not be adequate enough to generate a synthesized view that would be a close approximation of the reference image. This was Eurther verified when the synthesized view was produced at a later time. An artificial set of image and elevation data was used to verify that the transformation program functioned as desired before generating synthesized views of the original reference image. The artificial elevation points mapped into the artificial image exactly way as the original elevation data would map to the original reference image. The artificial reference image, shown in Figure 3.4,

Fig. 3.3 Elevation Line Drawing

Eij. 3.4 Artificial Reference Image
was of a small square structure resting on top of a much larger square structure. Selecting a large object for an artificial reference image would minimize the effects of the low resalution of the elevation data. This produced mare reasonable synthesized images that demonstrated the perspective transformation more accurately. The results of the transformation will be discussed further on in this chapter after considering some of the algorithms used to generate the synthesized view.
C. SPECIFIC ALGORIIHMS

1. Image Referencing Algorithm

Due to the resolution mismatch between the reference image and the terrain data, a smaller subset of the terrain model was selected. This would allow the transformation of smaller and more distinct images that could show the effects of the program better. The desired terrain elevation points are extracted from the larger reference terrain grid by interactively selecting the proper rows and columns that define those particular points. The program allows up to a 50 by 50 array of elevation points to be extracted. This size was chosen to limit the time required to generate a synthesized view. From the rows and columns, the latitude and longitude is tabulated for each point, and is then converted tc georectangular coordinates. The georectangular coordinates are written to a File in row order from left to right and from bottom to top. The first set of coordinates
match the southwest elevation point, and the last set of caordinates the northeast elevation point.

The georectangular coordinates of each terrain data point is translated to I, and J original image coordinates using the camera parameters supplied by the DMA. They are Eurther processed to IA and JA screen coordinates using the I Frame and J Frame of the desired reference image. The IA and JA coordinates derived from the elevation points will now correspond to the IA and JA coordinates of the reference image. Any four adjacent elevation points will define a rectangle which is divided inta two triangular panels by defining a line connecting two opposite corners. ance the triangular panels of the elevation points are defined in terms of IA and JA coordinates, the corresponding pixel grey scale values of the reference image that fall within the same screen coordinates of the triangular panel are collected and averaged. As seen in the example of Figure 3.5, the calculated average grey scale value is placed into a File along with the three specific elevation points that make up the triangular panel. Ihis procedure is repeated until the entire terrain grid has been processed. Each triangular panel represents a sample or average grey scale value of the reference image.

When the latitude, longitude, and elevation of the new observation point is input into the program, a new XL , $Y L$, and $Z L$ is calculated that corresponds to the new
perspective center. As explained earlier, the image plane is rotated to the desired viewing angle, which changes the M matrix parameters as well.

\#1
\#2

Points
123
243

- .

62 . .

Fig. 3.5 Triangular Panel Data File Structure With these new parameters for the perspective transformation equations, the georectangular coordinates of the terrain grid are once again run through the perspective transformation, and the new IA and JA coordinates are calculated for each point. These new IA and JA coordinates represent the transformed elevation points as seen from the new observer location. The next step is to take the same three elevation points that formed a triangular panel in the original transformation, map them into the synthesized image file using the new IA and JA coordinates, and then fill them in
with the assigned grey scale value. The mapping and filling process is explained in the next section.

2. Polugon Fill and Hidden Surface Elimination

In the perspective transformation of the terrain grid into the synthesized lmage plane, some of the triangular panels become partially or entirely hidden by other panels. Io determine which pixels will be visible and therefore written to the synthesized image and which pixels are hidden, the z-buffer algorithm was used.

When the new observer location is input into the program, the $X L, Y L$, and $Z L$ georectangular coordinates are tabulated. Using the georectangular coordinates previously calculated for each of the terrain grid elevation points, the distance or depth from the observer location to the elevation data points can be calculated by the following equation

$$
\begin{equation*}
\text { Depth }=\text { Square root }\left((X L-X)^{2}+(Y L-Y)^{2}+(Z L-Z)^{2}\right) \tag{3.14}
\end{equation*}
$$

The depth of the pixels within a triangular panel were calculated by using the normalized plane equation that defines the plane of the triangular panel. The normalized plane equation in 30 space is given by

$$
\begin{equation*}
a x+b y+c z=-1 \tag{3.15}
\end{equation*}
$$

Ta salve for the coefficients $a, b, a n d x$, the three elevation points that specify a triangular panel are used, and the x, y, and z are replaced with IA, JA, and the Depth of each elevation point. If the three points are (IA1, JA1,

Depth1），（IA己，JA己，Depth2），and（IA3，JA3，Depth3），then in matrix form we have the following

$$
\left[\begin{array}{ccc}
\text { IA1 } & \text { JA1 } & \text { Depth1 } \tag{3.16}\\
\text { IA己 } & \text { JAZ } & \text { Depth己 } \\
\text { IA3 } & \text { JA3 } & \text { Depth3 }
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right]
$$

Solving for the coefficients $a, b, a n d c$ we have $[$ Ref． $2, p$ ． 208］

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{lll}
\text { IA1 } & \text { JA1 } & \text { Depth1 } \\
\text { IAC } & \text { JAZ } & \text { Depth2 } \\
\text { IA3 } & \text { JA3 } & \text { Depth } 3
\end{array}\right]^{-1}\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \text { (3.17) }
$$

The inverse of the elevation point matrix is
determined by calculating the adjoint，which is the trans－ pose of the cofactor matrix，and multiplying each term by the recipracal of the determinant［Ref．5，p．A－15］．The depth of each pixel within a tranformed triangular panel aan now be determined by using the IA and JA of the pixel in the fallowing equation．

$$
\begin{equation*}
\text { Depth }=-(1+a(I A)+b(J A)) / c \tag{3.18}
\end{equation*}
$$

Each triangular panel will have different a, b, and c coefficients，therefore the pixels within each triangular panel will have a difEerent depth than those from another panel．

Ihe z－buffer is a two dimensional array that is the same size as the synthesized image of 512 by 512 pixels．

When the IA and JA coordinates of a pixel is determined, the depth is calculated and then compared to any previously written depth in the z-buffer at that same coordinate location. If the depth $1 s$ smaller, it means that the pixel is closer to the observer and would cover the previously written pixel. The depth of the new pixel will then replace that of the previous pixel. The assigned grey scale value, which $1 s$ determined from the projected triangular panel in which the new pixel 15 contained, is written to the synthesized image at the calculated IA and JA coordinate location. If the new pixel depth is larger then the previous pixel depth, that means the new pixel is farther away from the observer and would be covered by the previous pixel. In this case no action is taken and the next pixel is processed. This procedure is continued until all the pixels within each translated triangular panel has been processed. [Ref. 2, pp. 265-267]

The IA and JA coordinates of the pixels in the synthesized image are calculated from each transformed triangular panel using an active edge list (AEL), J_Bucket, and frame buffer. The IA and JA screen coordinates of the three elevation points that define a triangular panel are used to generate the parameters of the $A E L$. Three lines are formed that connect each of the three translated elevation points and are identified as line $1, ~ 2$, and 3 . A line is
defined between any two points from which you can determine the IA associated with the maximum JA of the two points by

$$
\begin{equation*}
I A \text { INCPI }=\text { (IA value of the maximum JA) } \tag{3.19}
\end{equation*}
$$

How much IA changes Eor a one step change in JA is given by

$$
\begin{equation*}
\text { DELTA IA } \left.=\left[\frac{\text { IA(Point } 2)- \text { IA(Point } 13}{\text { JA(Point } 2)-J A(P O I n t ~} 1\right)\right] \tag{3.20}
\end{equation*}
$$

which is the inverse slope of the line between the two points. The span of $J A$ between two points is given by DELTA JA $=J A($ Point2 $)-J A(P o i n t ~ 1)$ (3.21)

For each line, the IA coordinate that corresponds to the maximum JA value of the line, the amount IA changes for each one unit step of $J A$, and the total span of $J A$ is determined and stored into the AEL. After the line parameters are placed into the AEL, the line identification number is put into the J Bucket, which is a one dimensional array of size 512, at the same location as the maximum JA of the line. In this way the J.Bucket acts as a pointer to the lines stored in the AEL. If a previous line number has already been written to that location, then the line identification number of the new line is placed into the AEL and 15 linked to that line already residing in the J Bucket. An example is shown in Figure 3.6 where line \#1 is referenced by the J Bucket and line \#2 is linked to line \#1. The IA and JA coordinates of the pixel locations to be mapped to the synthesized image are contalned within the three lines
whose parameters are contained in the AEL. If a line is horizontal, the IA and JA coordinates of that line are located between the other two lines and therefore does not need to be written to the AEL. [Ref. 2, pp.75-79]

J_Bucket AEL For Line 1

AEL For Line ?
Fig. 3.6 Active Edge List Storage

The J._Bucket is scanned Erom its maximum to minimum coordinate value. If the J Bucket contains a line pointer, the parameters for that line are retrieved from the AEL as well as those of any line it is linked to. Since we have defined a triangle there will always be two lines to work with. From the parameters of the two lines, the IA coordinates that fall between them is calculated for each JA scan line. A scan line is all the columns (IA coordinates) along a particular row (JA coordinate). As the JA coordinate is decremented by one, from maximum to minimum, the J.... Bucket is checked to see if a new line has been added, and then the corresponding IA for each line is determined for that JA value. Those IA values and any that fall between them are mapped to the frame buffer.

The frame buffer is a 512 by 512 array that is initialized to 0 . As the IA and JA values are mapped into the frame buffer the coordinate locations matching the IA and JA values are changed from 0 ta 1. Ihis process continues, and each time the JA scan line is decremented, the DELIA JA parameters for each of the two lines are also decremented and the J..Bucket is checked. If the J Bucket contains another line pointer, then the line it references will replace the line whose $\square E L T A$ JA has decreased to 0. When fimished, the frame buffer will have recorded the IA and JA coordinates for every pixel location within the translated triangular panel. The frame buffer is then scanned, and if a particular IA and JA coordinate location contains a value of 1 , then the depth for a pixel located at those same coordinates is calculated and compared to previously tabulated depths in the z-buffer as explained earlier.

This process is known as a polygon fill routine that utilizes the z-buffer algorithm for hidden surface elimination. If any part of a triangular panel, after going through the perspective transformation, should map outside the synthesized image coordinate boundary, the entire panel is discarded and the next panel is processed. This is not a satisfactory solution and could have been corrected by implement: $7 g$ a clipping routine that would allow partial triangular panels to be mapped to the synthesized image.

However, due to time constraints, a clipping routine was not incorporated into the 30 transformation program.

D. SUMMARY

Using the artificial reference image from Figure 3.4 and an artificial terrain grid that mapped to the same image, two synthesized views were generated. The first synthesized view shown in Figure 3.7 was from an observation point located at $37^{\circ} 22^{\prime} 30^{\prime \prime} N$. latitude, $-122^{\circ} 01^{\prime} 59^{\prime \prime} \mathrm{W}$. longitude, and an elevation of 110 meters. Figure 3.8 exhibits the next synthesized view that was produced from an observation point of $37^{\circ} 20^{\prime} 0^{\prime \prime} N$. latitude while maintaining the same longitude and observer height as before. This simulates viewing the object from further away. As expected of a perspective view the object appears smaller. The near view also demonstrates the perspective relationship by the apparent taper from front to back. A third perspective view is depicted in Figure 3.9 from close in and at a higher elevation. The observer location was from $37^{\circ} 23^{\prime}$ 30', N. Latitude, -122• 01' 59', w. Longitude, and a height of 150 meters. This demonstrates the visual effect of not displaying partial triangular panels in the image and why a clipping routine is needed.

The actual reference image is shown in Figure 3.10 fram which the synthesized view displayed in Figure 3.11 was generated. In comparing the reference image to the synthesized view there is little resemblance. A closer
synthesized view is seen in Figure 3.12 which gives a partial representation of the reference image. The lack of detail in both shading and the depiction of features can be attributed to the poor resolution of the terrain data (approximately 25 meter resolution) as compared to that of the reference image data (1 meter resalution).

To improve the quality of the synthesized view the terrain data must be of a higher resolution. Having more elevation data points over a given area, the fewer number of reference image pixels ane must collect and average for a triangular panel. The synthesized image will then maintain a closer approximation to the various shades of the reference image. The physical shape of an object also suffers From poor terrain data resalution. The perspective transFarmatian forms straight lines between translated elevatian points. This causes object distortion if the elevation points da not fall exactly along the boundaries of the object. As an example, if a square box in the reference image had anly ane elevation paint defined on its surface at the center of the box, then the synthesized image can nat reproduce the corners and edges of that box, and it would appear distorted. For these reasans the closer the resolution of the terrain data to the resolution of the reference image, the closer the synthesized view resembles the reference image $1 n$ shading and shape.

Fig. 3.7 Artificial Synthesized Image 1

Fig. 3. Artificial Synthesized Image ?

Fig. 3.9 Artificial Synthesized Image 3

Fig. 3.10 Reference Image

$$
\text { Fig } 3.11 \text { Synthesized Image } 1
$$

[^0]The $3 D$ transformation program was developed to allow tracing the flow of data easily. Much of the data was written to files so that it could be printed out and studied. This method of data storage required certain files to be read many times as the synthesized image was generated. The program execution would have been faster if the data had been stored in arrays that are easily passed between the various modules. Another consideration that would increase speed would be to decrease or eliminate the interactive input required. This could be accomplished by extracting the desired terrain data into a File and separating the associated reference image before program execution. This would require longer set up time but would decrease the amount of data manipulation required by the program and increase its overall speed.
A. GENERAL

The 30 computer image transformation from a photographic image was a difficult task to achieve satisfactorily. The main objective was to develop a program that takes a grey scale photographic image, a set of elevation data points defined over that image, and generates a rotated synthesized perspective view. This goal was realized, but some areas still need improvement. The quality of the synthesized view is judged on how well the grey scale values of pixels match those of the original image and how closely the translated objects resemble the desired structure.

The resolution of the terrain model as compared to the resolution of the reference image data, extensively affects the synthesized image quality. Depending on the cantents of the reference image, the required resolution of the terrain model will vary. If the image is of open country, the distance between elevation paints may be large and the result may not suffer unacceptable degradation in the synthesized view. If the image is of a city that has many small distinct objects such as buildings, then the resalutian of the elevation points must be higher. Given a set of elevation data points, the question to be resalved is how to make the synthesized pixels relate to the reference image better, and thus improve the quality of the synthesized
views? This question and alternative ways to improve speed and program flexibility will be discussed.

B. GREY SCALE CORRELATION

There are a few possible methods to improve the shading of the synthesized view to better match that of the original image. The translated triangular panels form very distinctive lines or boundaries between areas of different shades. It may be desirable to blend these boundaries by sampling the pixels along both sides, replacing those pixels with an averaged value. Another possibility would be to implement a Gouraud or Phong shading algoritm [Ref. 3, pp. 323-330]. This would help smooth the shade transition across the boundary and result in a more smooth appearance.

Another method to imprave grey scale correlation would be to develop a way to divide the triangular panels into smaller triangular areas before referencing the original image. By having smaller triangular panels, smaller areas of the reference image are sampled resulting in a better approximation in the synthesized view.

Only the left image of a stereo photographic pair of images was used in this study. The right image may contain grey scale information of surfaces hidden in the left image view or vice versa. By sampling both left and right images and complementing them, some ambiguities may be resolved. These suggestions will increase the number of calculations
required to generate the synthesized view but may improve the quality of the synthesized view.

C. PROGRAM SPEED AND FLEXIBILITY

Although speed was not a prime consideration in this study, it would be desirable to generate synthesized views as quickly as possible. To determine which subroutines consumed the most $\subset P U$ time the program was monitored while running the artificial reference data set. Table 1 shows the results of the CPU time used and the percentage of the total time for each subroutine called by the main program. If a subroutine calls another subroutine that time is included in the calling routines CPU time. The subroutines that required interactive input were not measured. ThereFare, the total CPU time cannot be measured precisely. However, the results obtained represent reasonable estimates and demonstrate where the focus should be on improving overall speed.

Some suggestions have already been discussed on how to improve the speed of the program, but other methods also exist. Preconditioning the input data to eleminate interactive input and using arrays instead of files were two methods already presented. The z-buffer is accessed several times during synthesized view generation. If the z-buffer could be implemented in hardware, the time required for processing of polygon fill and hidden surface elimination routines would be improved.

	IABLE	
CPU TIME CONSUMPIION (IN SECONDS)		
SUBROUI INE	CPU TIME	PERCENTAGE (\%)
TER CROP	14.11	9.051
READIMAGE	3.23	2.072
TER INTRP	0.04	0.026
REAL EL	0.07	0.045
TER DMS	0.69	0.443
IM_REFIJ	0.39	0.250
IM REFAUG	1.10	0.706
AFFIN	0.04	0.026
NEW I J	0.80	0.513
NODE DEPTH	0.63	0.404
FILL	134.80	86.467
IOTAL	155.9	100.0

The frame buffer is used and accessed in two different areas of the program for each triangular panel translated. It may be possible to eliminate this buffer by processing each pixel as its IA and JA coordinates are determined, instead of storing that information into the frame buffer Eor later processing. Dther polygon Eill routines such as seed fill algorithms or using fence registers may be faster than the edge Eill routine used in this program [ReF. $2, \mathrm{pp}$. 80-86].

For program Elexibility it would be desirable to be able to adjust the image plane of the synthesized view to any desired angle. The pragram limits the image plane to a northern direction. To make the synthesized image plane
adjustable would require developing a method for rotating the image plane coordinates in terms of the georectangular coordinates. This would improve the $3 D$ transformation program and extend its usefulness. Another program improvement would be the incorporation of a clipping routine to improve the appearance of partial synthesized views as discussed in previous sections.

The ideas used to develop this program were contrived from Eundamental concepts. Many areas were discussed that could improve or enhance the basic implementation of the program. The results that were obtained are encouraging and could easily be used as the basis for further study.

> APPENEIX A

PRDERAM SUMMAR：＇

```
1. PRIEPAM TFA*: 3 こ
    a. Fur=さicrs pe=Ezrmed
```



```
input cE a -ew cbserve= location and gereretes a sy-thes:zed
    #eu by Ma{ing ここ\ls ここ var:ous subroutine madules. Ihis is
the ma&m part of the frogram
    `.Inpu:
    Passes parameters betweer sutrautimes.
    こ.こひちこいこ
    An IMAGES Elle that cantains the synthesized vie..
```



```
    #:ore.
    E. Ca\\ed rouたこクes
    \NPL:$
        Cbtains the IMterac=:ve:nfu= こE
```

READIMAEE：	Peads the reference image inta ar array こalled IMAGE．
IER INITPD：	This rcutire cullects ard ajerミjes
	assigrs that ialue tz any urta＝ur
	eleソaさıロ さaさa p＝：ワたs．
REAL EL：	
	polnts lпto a Eile alled 2Fin．DAT
	as real values in meters atcve sea
	leve：．
IEP EIS：	Determines the latitude and lon－
	gitude of the elevation paints then
	converts them to georeatangular
	coordinates and stores them in a
	Eile called x Z ，gat．
IM PEFIU：	Converさs the georeatangula＝＝0コー－
	むinates to the reference image iA
	and Jf screer cコorさinaさes．
IM REPAUE：	Constructs the Elle MIOLE．Dat thaさ
	aコntairs こhe three eievatior paires
	and grey scaie value that mate ui a
	さここのヨular panel．
AFFIN：	Determines the afEine transearm
	ここミミミ：
	transform of the synthesized image

Flane ccctairates tこ screer こここここ：ーコヒミs．

․ Pこコニンクe Jarameters

IENDN：	The number cF＝こws of the extこaこここコ
IENIDM：	Ihe rumber of calumns of the
	のxさこaこさed こlevaさion data poıクさs．

こ．SUEROUTINE IMPUT
a．Functians perEarmed

b．Input（interactive）
IROW：Minimum raw of the elevatier area des：red．

LROW：Makimum raw of the elevation area desired．

ICOL：Minimum eclumn value cf the desired elevetion area．

LCDL：Maximum column value cE the desired
きこevヨさıロா area．
ELFILE：The reference elevation file rame．
IMFILE：The reference lmage file name．
IFRAME：The I Frame value of the reference 2mage．

JFRAME：
The j Frame value af the zeference image．

こ．こuさpu
Same as the interactive input．
こ．Calling＝autines
TRPN 3 D．
e．Called routines
None．
E．Routine parameters
None．

3．SUEPロUTHE TER CROP
a．Furcたicrs Perfarmed

Reads the original terrain grid and constructs a smaller grid of the desired elevation points in the array IELEUこ．

上．Input

$$
\begin{array}{ll}
\text { IPCin: } & \text { Minimum row of the desired } \\
& \text { elevation area. } \\
\text { LROW: } & \text { Maximum row af the desired } \\
& \text { elevation area. } \\
\text { ICOL: } & \text { Minimum column value of the desired } \\
& \text { elevation area. } \\
\text { LCOL: } & \text { Maximum column value of the desired } \\
& \text { elevation area. } \\
\text { ELFIL: } & \text { Thefile containing the reference } \\
& \text { elevation data. }
\end{array}
$$

C．コuさput

$$
\begin{aligned}
& \text { IELEUZ: An array containing the extractad } \\
& \text { elevaさion points. }
\end{aligned}
$$

d．Calizng routines
TPAN 3.
e．Called routines．
Nane
E．Routine parameters

$$
\begin{array}{ll}
\text { IELEU1: } & \text { An arzay containirg the antiにe } \\
& \text { eievatian aata set. } \\
\text { and li: Counters. }
\end{array}
$$

4．SUEPDUTIHE READIHAEE
a．Functions performed
Reads the reference image into ar araay called
IMAEE．

と．さーミーニ
IMFIL：The Eile cantaining the reference 1mage pixel grey scale data．

こ．ここざロム
I！！ACE：An array containing the pivel grey scale values of the referenae image．
d．Calling routines
TPAN 3 D ．
e．こalled Eoutines
Nore．

E．Rouたime parameters
I只 and Iこ：
■コunters．

E．SUBRIUTINE TER IMTPR
a．Fincians perEarmed
 ＠lミ：aさian area and assi＝ns that elevation こo any unknewn きこきこさュロク pロックヒェ．

を．I Pアu：

$$
\begin{array}{ll}
\text { IENIDH: } & \text { Mumber of entracted Elevaたion =ous. } \\
\text { IEN:こM: } & \text { Number of extraこさed elevation } \\
& \text { solumns. }
\end{array}
$$

IELEUZ： Ar arよay σ Ef the extracted elevat：or ここさぇ．

こ．こuたよuた

$$
\begin{aligned}
& \text { poirts คコ:e been assigned さhe } \\
& \text { average eloveさiこの ご さhe area. }
\end{aligned}
$$

こ．こelㄴํg ことutines
TPON 3 コ．
ミ．こelled ここいさınes
Vere：
E．Routine parameters

E．SUERコUIINES REAL EL
a．E－rctions perEarmed．
Greates a real Eile called Z5：L．IAT CE the atさこここed

$$
\begin{aligned}
& \text { 々. Irpu= } \\
& \text { IEMDN: The Mumber cE extこacさad elevaさこのー } \\
& \text { EOWS. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ここさumns. }
\end{aligned}
$$

IELEUZ：

$$
\begin{aligned}
& \text { An ariay cf the extracted elevetior } \\
& \text { Jata pこints. }
\end{aligned}
$$

こ．Ouこput
 the e：ンtraことed elevatian data points．

エアAN ヨ ロ．
き．Called Ecutines
Niore．
E．Routine parameters
AEIEU：A real array of the extracted
elevaさian points.
－．SLEPDUTINE TER DI゚S
a．Functions performed
ココクいerts each eutこaにさed elevation data pu:ーt さこ :こs
Ins eunivalent. It uses the fa=t that eash slevaさion point
zeoreserts a che secand shange in latitude of loryitude Erom
the revt point, starting Esam the Southwest corner refererae
 oz＂W ．Longitude．The mis is converted to x, y and z gecrectangular coordinates ant stared ir the XYZ．DAT Eile．

2．Input

$$
\begin{array}{ll}
\text { ミロロu: } & \text { The minimum zow of the evtracted } \\
& \text { elevation data paints. }
\end{array}
$$

LPOW	The maximum row of eistracted eleva－ さion data painさs．
ICOL：	Ire minimum column value of the
	ètracted elevation data points．
ここご：	The maxımum column value of the
	extracted elevation data points．
IENDM：	The total Mumber of raws cf the
	ext－acさed elevation data points．
2Fİ．DAT：	The file containimg the real values
	of the extraこted elevation data
	pornts．
Qutput	
Y：Z．EAT：	－file contaiming the gecrec－
	tangular coardinates of the ex－
	tracted elevaticn data forrts．
こa122ng こoutines	
tran 3 D．	
Called routznes	
［ぃSこ入vz．	
P＝utine parameter	
It and JL：	Counters．
$\because, ~ \because, ~ a n d ~ z: ~$	Gea＝ectangular＝コニロざnates of an
	ale：aさicn foint．
LOIE LOTM，and	
$\therefore \triangle \square S$	Ire－aさ：こしde in degrees，Minutes，
	and secコnds＝E an olevation parme

․ Cutpuネ

－Eile contaiming the gecrec－
tangular coardinates cf the ex－ tracted elevaticn data foirts．
－Eal：2ng Eoutines
tran 3 a．
e．Called routines
［nezyyz．
E．Poutine parameters

IL and JL
\therefore ，\because, and z ：

The－aた：こしde in こegrees，Mンクuたes，
and secands＝E an slevation parme．

and LONS：	The longitude in degrees，mirutes，
	and secands af an elevation part．
HEIEHT：	The real elevation 1 n meters above
	sea leved of an elevatian poirt
PLAT＂and plais：	The reference latitude in mirutes
	2nd seconds of the reference eleva－
	ticr point lecated at Eコw 2，calumn
	1.
PLCNH AND PLONE：	The reference longitude in minutes
	and seconds of the reference eleva－
	ヒュコロ Foint lccated at 5ow 2 ，こalumm
	I．

8．SUbROUTINES IM REFIJ
a．Functions perfcrmed
Caiculates the I and J reference image caordinates and sanverts then to the IA and JA screen coordinates far each extracted elevation data point and puts them inta arこays IA，and fí．

上．Infut
IFRAME：The ：Fame ialue of the zeference image．

IFRAME：The J Frame value af tra refarence inage．

IEAD：The number of＝ous in the g．taacted き1ヨ・ヨさュロク コaさa．

IENDN：The number af＝alumns in the ew－ さraこte』 elevaさ10n daさa．

Data File cこntaining the gevさec－ tanヨular＝aロロさinates こE さhe extracted elevation data points．
＝．Gutput
IA：An array containing the if screen courdinate values of the extracted elevaticn data pcints．

An array containing the JA screen cocrdinate values of the＠xtracさed Elevation data paints．

コ．Calling rautines
TPAN 3 D

き．Called こコutines PRCIECT，YYZII．

E．Routire parameters

DMEEA：

PHI：

KAPPA：
$x 0$ and $\because 0:$

Potatian of the arigiral image Flane about x－axis in radians．

Pataticn cE the arigirial image plane about the $y-a x i s$ in radians．

Rotaticn of the origirat image plane about the z－aスis in radians． CEEset cE the principal pcirt E＝am
the IPP．

X1，Y1，and 21：The gearectangular coardinates＝E the absezver lacatian．

A1，A2，B1，E2．
［1，and ca：

FOOUS：
XIMA：

YMA：
The amera foaal length．
The $x-a$ as value of the elevation
point in lmage plane cこここさinates
The $\mathrm{Y}-\mathrm{axis}$ value of the ele＊ation
paint in image flane caordinates．
I and J：
The original reference image
screeni cuarjinates．
－SHERDUTIME DMEこジな
a．Functians performed
Converts the DMS latitude and langitude date ta \times, ond 2 gearectangular coordinates．

上．I アアL」
LatD，LATM，ard
LOTS：The－atztude in degrees，minutes
and secコクさs こE さんe e：さracteコ

エゴロ，ンゴルツ，ミワコ

LOMS：

HEIGHT：
The height -7 meters above sea こejel cf the＠：たこacさed elavaさiコー むaこa pコiクさs．

こ．ローさたいさ
\because, \because, anc $2:$
The georectarguiar aocrdirates＝E

TER DMS，ロES ここロ
き．こaさled こコutimes
ivre．
E．Poutine parameters
PHI：
Angle in radians Eram the 2－a：i：s＝E

system．
LANロ：
Angle in radians fram the x－axis of
the gecrectangular cccrdirates
system．
N，E．SQUARE．
and A
Eンven parameters used 17 こa：ニuー

PAニ ：Ar：
PI：
Number＝f rajians fer degこee．
Number＝f＝adians：－a hale ニンこここ』．

こ．Cuこ戸した

XIMA：	The lmage plane x－axis coordinate
	value af the extracted elevation
	data points．
	The image piane y－awis coordinate
	vaive of the extractad elevation
	paints．

」．Caミ2ng routines
IM PEFIJ．
e．Called rautines
None．
E．Routine parameters
M11，M2こ，M13，
M21，M2a，M23，
M31，M32，M33：The parameters of the M matrix．
DErlom：The denaminatar of the transearma－ tion equaticns．
\therefore S．Sugroutine xizaj
a．Functions perfurmed
Gomverts the image plane cocrdinates of the ex－
さたaこさeさ elevation data paints to the I and J original image cocranates．

2．Input
XIMA：

$$
\begin{aligned}
& \text { The image plane x-axis coordinate } \\
& \text { values of the extracted elevation } \\
& \text { data points. }
\end{aligned}
$$

Y＇MA：
The 1 mage Flane y－axis coordinate values af the extracted elevation date points．

A1，A己，E1，E2．
С1，こコ：The afEine transform parameters to map the image plane coordinates to the reference image I and J cocrdinates．

こ．Dutpuた
I and J：
The reference image coardimate values For the extra＝ted elevation data polnts．
d．Callıng EOLさines
IM REFIJ，NEU IJ．
e．Calied routines
ivne．
F．Routine parameters
LENDM：The dencminater of the affire
t=arsfarm.

こᄅ．Subroutines im－refaug
a．Functions perfarmed
Constructs the Eile MDDE．DAT that contains the elevation points and reference grey scale value that marie up a triangular panel．

```
b. Input
```

IA and JA：
：MAGE：

IENDM：

IENDN：
The number of columns in the extracted elevation data．
a．Dutput
NRDE．DAT：
The Eile that contains the eleva－ tion points that make up a \pm ：r－ angular panel and its asscciated reference grey scale value．

む．こalling tütines
TRAN 3 日．
e．Called routines
Nane．
f．Poutine parameters
SLOPE：The slope of the diagonal line that separates the rectangle，def：ned by four elevation data points，into Ewo triangular panels．

The Y intercept of the चiagers： line．

IY，M，and N ：	Counters．
IGREY1：	The averaged reference grey scale
	value of the triangular panel below
	the diaganal line．
ISPEV2：	The averaged referenced grey scale
	value of the triangular panel above
	the Liagonal line．
L，LI，and IP：	Counters．
NODE A，NICDE E ，	
MCDE - and	
NCIE D ：	The numerical designation of the
	Eour elevation points that mare up
	the rectangle that is divided into
	two triangular panels．
ICOUNT1：	The count of the number of pixels
	averaged in the triangular panel
	below the diagonal lime．
ITOT1：	The summation of the fixel grey
	scale values averaged in the
	triangular panel below the diagonal
	line．
ICDUNTこ：	The count of the number of pixals
	averaged in the trıangular panel
	above the diaganal lire．
：さこTコ：	The summation of the pixel grey
	saale values averaged in the

```
13. SUBROUTINE EXI DPIEN
```

a. Functions performed

Determines the M matrix parameters used in the rotation of the image plane far the synthesized view. Ihis frogram defines the thrae 2 mage plane cocrdinates 1π terms af georectangular ccardinates.

เ. Input
IENIDM: Ihe number of rows in the extracted elevatian data polnts.

IENDH The number of columns in the extracted elevation data points.
a. Dutput

M11, M12, M13: First row coefficients of the transformation matrix.

M21, M2ᄅ, M23: Second row coefficients of the transfarmation matrix.

M31, M32, M33: Third row coefficients of the むransfarmation matri\%.

ᄅ. Calling routines
Nes IJ.
e. こalled routines

Vone.
E. PDutine parameters

MAGN X :	The magnitude of the synthesized r1Ew image plane x-a:sis.
MAGN 'i:	The magnitude of the synthesized
	vaew image plane f-axis.
Mas! z:	The magnitude of the synthesized
	view image plane z-axis.
x, \because, and 2 :	Georectangular courdinates of the
	extracted elevation data points.
x CORD:	Array that stores the georec-
	tangular X coordinates of the
	extracted elevation data points.
\because COPD:	Array that stores the georec-
	tangular Y coordinates of the
	extracted elevation points.
2 CGRD:	Array that stores the georec-
	tangular 2 coordinates of the
	extractad elevatian data parnts
X UECX, X UEC.	
ane X UECZ:	The X, Y and 2 georectargular
	coordinates of the synthesized
	1mage plane x-axis.
Y VECK, Y UEC',	
and Y VECZ	The X, \because, and Z gecrectangular
	coordinates of the synthesized
	image plane y-axis.

2 UESX， 2 UESY．
and 2 UECZ：The X, Y and 2 gearectangular coordinates \quad ff the synthesized
image plane z－axis．
The total number of extracted
elevation points．
Counters．
IP and IP：Counters．

24．SLEROUTINE AFFIN
a．Functions performed Assigns or calculates the coefficients to be Utilized in the affine transform from image coordinates to screen coordinates of the synthesized view．

上．エワアuに
None．
＝．コuさアした
$A 1, A 己, E 1, B \geq$
and［1，c2：The affine transform coefficients
Ear the synthesized view image plane coordinates to screen coordinates．

ᄅ．Calling routines
TPAN 3 D．
e．Called routimes
Yone
E．只outine parameters

XIMA MAK：	Assigned maximum image piane X
	cocrdinate．
YIMA MAX：	Assigned maximum image plame y
	coordinate．
	Assigned maximum IA screen
	cocrdinate．
	Assigned maximim JA screen
	cocrdinate．

15．SUERCUTINE DES LOC．
a．Functions performed
Calculates the new cbserver lccation gecrectangular
とロここコンnates from the lnterective input of the desired letitude，and longitude，and height．This routime also assigns the focal length for the synthesized view．
t．Input（interactive）
LaTM and Lfis：The minutes and seconds of the latitude of the new cbserver location．

LOVM and LONS：The minutes and seconds of the longitude of the new observer locatıロッ．

HEIGHI：The altitude in meters above sea level for the new observer loca－ tion．
＝．－．．ここ：

X1, Yl, and 21: The secrectangular coordinates of FOCUS:

Assigned focal length far the synthesized vieu.
d. こal:2ng routines

IRAN 3 D.
e. Called routimes Dasexiz.
E. Poutime parameters

None
16. SUBROUTINE NEL IJ
a. Functions perfarmed

Caloulates the new IA, and JA screen coordimates of
the extraoted elevation data points using the new observer location data.

ㄴ. Input
X1, Y'l and 21: Gecrectangular coordinates of the new abserver location.
facus:
Assigned focal length Eor the synthesized vieu.

A1, A己, E1, B?,
and c1, ca:
IENDM:

```
The affine transfirm ccefficierts.
The number of rows of the extra=ted
elevation data Fcimts.
```

I ENDN:
The number of columns of the evtracted elevation data pcints.
=. Dutput

IA: | Ihe array containing the elevaticn | |
| ---: | :--- |
| | data IA screen cocrdinates of the |
| | synthesized view. |
| | Ihe array containing the elevetion |
| | data Jf screen cocrdinates of the |
| | synthesized visu. |

d. Calling routines

IRAN 3 D.
e. Called routines

XYZIJ, EXT ORIEN.
E. Routine parameters

M11, M12, and
M13: First row coefficients of the transformation matri\%.

M21, Mコ2, ane
M23:
Second row coefficients of the transformation matrı

M31, M32, and

M33:	Ihird rou coefficients of the
	transcormation matrix.
$\times D$, and $\because 0: \quad$	Ihe offset of the principal point
	to the IPP.
$X I M A: \quad$	Image plane x coordinate.

YIMA:
DENDM:

ITDT:

IP:

Image plane y coordinate.
Denominator of the transfarmation matrix.

Tatal number gE extracted elevation data paints.

Counter.

1-. SUERCUTINE NCDE DPTH
a. Functians performed

Calculates the distance from each transformed elevation data point to the new observer location.
b. Input

X1, Y1, and 21: The georectangular coordinates of
the new observer location.
The number of rows in the extracted
elevatian data paints.
IENDN: The number of calumns in the extracted elevation data points.
=. Dutplet
DEPTH: Array of the distances from the さransEarmed elevation data points
to the new obserye= locaticn.
d. Calling rautines

TRAN 3 D .
e. こalled rautines

None.
E. Routine parameters

IP：	Counter．
IIOT：	Iotal number of oxtracted gleyatian
	daさa painさs．

19．SUEロースー・：シュ．
a．Funcたians performed
Determines the hidden surfaces using a z－buffer algコこ：さhm．The depth is compared for each fixel at a siaecified screen coordinate tc determire if it is written ta the syクthesized image．

L．Input

XYZ．DAT：
File of the georectangular ecor－ dimates of the elevation data pcints．
a．Dutput
IMAEES：A Elle containing the symthesized ımage．
d．Calling routines
TRAN 3 D．
e．Called routines
FRAME FIL．
E．Routine parameters
こ ELFF：
The z－buFfer

X1，Y1，21，X2，
Yセ， $22, \times 3, \because 3$ ，
and 23：

2 DPTH：The distance of a pixel within a triangular panel to the new observer location．

C11，C12，C13．
c21，c2a，c23，
C31，c32，c33：The cofactors of the flane equation matri\％．

DET：
The determinate of the plane equation matこ：\％．

A COEF， $\operatorname{s~CDEF,~}$
and C CDEF：The＝cefficients of the plane

IGREY：Grey scale value of a telangular panel．

NIDDE A，NODE E，
NODE $=$
Numerzこal designaticn of the three
elevatıan data paints thet maドe a triangular panel．
－HIN：
Minimum if screen coordinate of
the three elevation foimts．
Masimum IA screen＝oardinate af the three elevatian points．

Minimum JA screen coordinate of the three elevation paints．

Maximum JA sareen ccordinate of
the three elevation points．
FRAME：
The frame buffer．
IP，I，J，
K ，and L ：
IPLANES：

Caunters．

Total number of triangular panels
constructed fram the extェacted
elevation data palmts．
19. Subrautine frame fil
a. Functians performed

Constructs an edge list Eram the three transformed Eleration puints. These edges ferm the belmearies fer a polygon Eill routine. The pixels that are determined to fall within the trarsfarmed triengle are marked in the frame bufEer.

```
&. Input
```

NODE A, NODE B,
and NODE $\mathrm{C}: \quad$ The \quad umerical designation of the
three elevation data points that
make a trıangular panel.
IA: Array that contains the IA screen
coordinates of the transformed
elevation data points.
Array that contains the JA screen
coordimates of the transfarmed
elevation data polnts.
J MaK: Maximum JA screen coordinate of the
three elevation data paints.
I MIN:
Mirimum JA screen scordinate of the
three elevation data pcints.
=. コutput
ERAME:
The frame buffer array.
d. Galling routine F:LL.
e. Called routine

Nome.
E. Routine parameters

1 INCPT:	Ihe metching IA cocrdinatき ce the maximum iA poirt of a line.
DELTA I:	The amcunt if changes far a one
	Step =hange in Jit.
DELIA J:	The total JA span of a line.
AEL:	Arsay sontaining the parameters of
	the three lines of transformed
	triangular panel.

XNODE1 and
XNODE $2: \quad$ Designates the number of IA coor dinates between two lines for a given JA.

DX:	Indicator used to determine the
	direction in which the IA cear-
	dinates are counted
NODE:	Array containing the numezical
	designation of the three slevatior
	daさa points.
MODE1, and	
NODE2:	Designators for determinimg the
	elevation point that contains the
	highest JA value between two
	paints.

NHIEH and

N LOW:
Used with NODE? and NODE2 Eor determining the highest Jf value between two paints.

IT, IL, IP
and IS:
Counters.
J BUCKET:
Array that contains the line number designators referencing the AEL. Used to determine the number of iA coordinates to be written to the frame buffer.

ICNT and LCNT: Counters Ear the J ELCKEI.

3D-TRANSEORMATION PROGRAM LISTING

PROGRAM TRAN_3_D

THIS PROGRAM TAKES AN IMAGE AND ELEVATION EILE AND CONSTRUCTSTHE REEERENCE IMAGE AND ELEVATION EILE. EROM THESE EILES A SYNTHESIZED IMAGE IS PRODUCED.

CHARACTER ELEILE*13,IMEILE*13
BYTE IMAGE (512,512)
INTEGER IELEV2 (50,50), IA(2500), JA(2500)
INTEGER IROW, LROW, ICOL, LCOL, IENDN, IENDM,
INTEGER IERAME, JERAME
REAL X1,Y1,Z1, EOCUS,DEPTH(2500)
REAL A1, A2, B1, B2, C1, C2, OMEGA, PHI, KAPPA

```
CALL INPUT( IROW,LROW,ICOL,LCOL,ELEILE, IMEILE,
            I ERAME, JFRAME)
OPEN(UNIT=1, EILE=ELEILE, STATUS='OLD')
OPEN( UNIT=2, EILE=' ZEIL. DAT', STATUS='NEW',
    ACCESS='DIRECT', RECORDSIZE=128, MAXREC=512)
OPEN(UNIT=3, EILE='XYZ. DAT', STATUS='NEW',
    ACCESS='SEQUENTIAL', EORM='EORMATTED')
OPEN(UNIT=4, EILE=IMEILE, STATUS='OLD', ACCESS='DIRECT',
    RECORDSIZE=128, MAXREC=512)
OPEN(UNIT=20,EILE='NODE. DAT', STATUS='NEW',
    ACCESS='DIRECT', RECORDSIZE=128, MAXREC=512)
OPEN(UNIT=21, EILE=' IMAGES. DAT', STATUS='NEW',
    ACCESS='DIRECT', RECORDSI ZE=128,MAXREC=512)
CALL TER_CROP (IROW, LROW, ICOL, LCOL, IELEV2)
    I ENDN=LROW-IROW+1
    IENDM=LCOL-ICOL+1
CALL READIMAGE(IMAGE)
CALL TER_INTRP(IENDN,IENDM,IELEV2)
CALL REAL_EL(IENDN,IENDM,IELEV2)
CALL TER_DMS(IROW, LROW, ICOL, LCOL, IENDM)
CALL IM_REEIJ(IA, JA, IERAME, JERAME, IENDM, IENDN)
CALL IM_REEAVG(IA, JA, IMAGE, IENDM, IENDN)
CALL AFEIN(A1, A2, B1, B2, C1, C2)
CALL OBS_LOC(X1,Y1,Z1,EOCUS)
CALL NEW_IJ (X1,Y1,Z1,FOCUS,A1,A2,B1,B2,C1,C2,
                                    IENDM, IENDN, IA, JA)
CALL NODE_DPTH(XI,Y1,Z1,DEPTH,IENDM,IENDN)
CALL EILL(IA, JA, DEPTH, IMAGE, IENDM, IENDN)
CLOSE (1)
CLOSE(2)
CLOSE(3)
CLOSE (4)
CLOSE (20)
```

SUBROUTINE TER_CROP(IROW,LROW, ICOL,LCOL, IELEV2)
THIS SUBROUTINE READS THE ORIGINAL TERRAIN GRID AND CONSTRUCTS A SMALLER GRID OE THE ELEVATION POINTS DESIRED.

CHARACTER SWLAT*8, SWLON*8, DELLAT*4, DELLON*4, CHARACTER COLS*4,ROWS*4
INTEGER IELEV1 $(210,239)$, IELEV2 $(50,50)$, IROW, LROW
INTEGER ICOL, LCOL,JV(239)
C
IROW : INITIAL ROW OF DESIRED AREA
LROW : LAST ROW OE DESIRED AREA
ICOL : INITIAL COLUMN OE DESIRED AREA
LCOL : LAST COLUMN OF DESIRED AREA
ELEILE : ELEVATION DATA EILE NAME
IMEILE : IMAGE DATA EILE NAME
IFRAME : I ERAME NUMBER
JERAME : J ERAME NUMBER
CHARACTER ELEILE*13,IMEILE*13
INTEGER IROW, LROW, ICOL, LCOL, IERAME, JERAMERETURN
END
WRITE(6,*)'INPUT ELEVATION AREA DESIRED'
WRITE(6,*)'ENTER MINIMUM ROW NUMBER :
READ(5,35)IROW
WRITE(5,*)'ENTER MAXIMUM ROW NUMBER :
READ (5,35) LROW
WRITE(6,*)'ENTER MINIMUM COLUMN NUMBER :
READ(5,35) ICOL
WRITE(6,*)'ENTER MAXIMUM COLUMN NUMBER :
READ(5,35) LCOL
EORMAT(I3)
WRITE(6,*)'INPUT THE ELEVATION DATA EILE NAME : '
READ(5,45)ELEILE
WRITE(6,*)'INPUT THE IMAGE DATA EILE NAME : '
READ(5,45)IMEILE
EORMAT(A13)
WRITE(6,*)'INPUT THE I ERAME NUMBER OE IMAGE : '
READ(5,55)IERAME
WRITE(6,*)'INPUT THE J ERAME NUMBER OE IMAGE : '
READ(5,55)JERAME
END

```
RETURN
END

C
            \(\operatorname{READ}(4, \operatorname{REC}=I R)(\operatorname{IMAGE}(I C, I R), I C=1,512)\)
CONTINUE
RETURN
END
C

SUBROUTINE TER_INTRP(IENDN, IENDM, IELEV2)

DATA NEXT,IEL,IAVG/0,0,0/
C
DO \(20 \mathrm{~N}=1\), IENDN
DO \(10 \mathrm{M}=1\), IENDM
IE (IELEV2(M,N).EQ. - 32767 )THEN GOTO 10
ELSE
NEXT=NEXT+1
IEL=IEL+IELEV2(M,N)
END IE
CONTINUE
10
CONTINUE
IAVG=IEL/NEXT
C CHANGE UNKNOWN ELEVATION VALUES TO THE
C CALCULATED AVERAGE.
DO \(40 \mathrm{~N}=1\), IENDN
DO \(30 \mathrm{M}=1\), IENDM
```

 IE(IELEV2(M,N).EQ. - 32767)THEN
 IELEV2(M,N)=IAVG
 END IE
 CONTINUE
 CONTINUE
RETURN
END
C
C
SUBROUTINE REAL_EL(IENDN,IENDM,IELEV2)
C
CONTINUE
RETURN
END
IMPLICIT DOUBLE PRECISION (A-Z)
INTEGER IROW, LROW, ICOL, LCOL, IENDM, IL, JL
REAL X,Y,Z,LATD,LATM,LATS,AELEV(239)
REAL LOND, LONM, LONS, HEIGHT
PARAMETER(RLATM=22., RLATS=47., RLONM=5, ,RLONS=3.)
C
LATD $=37$.
LOND=-122.
DO 20 IL=IROW, LROW
$K=I L / 60$
LATM=RLATM+K
LATS=RLATS $+(I L-K * 60)$
IE (LATS. GE. 60.0)THEN

```

LATS=LATS-60.0
\(L A T M=L A T M+1.0\)
END IE
II=IL-(IROW-1)
READ (2, REC=I1) (AELEV(INT), INT=1,IENDM)
\(I=0\)
DO \(10 \mathrm{JL}=I C O L, L C O L\)
K=JL/60
LONM=RLONM-K
LONS=RLONS-(JL-K*60)
IF (LONS. LT. O. O)THEN
LONM=LONM-1.0 LONS \(=\) LONS +60.0
END IE
LONM=-LONM
LONS \(=-\) LONS
\(\mathrm{I}=\mathrm{I}+1\)
HEIGHT=AELEV (I)
CALL DMS2XYZ( LATD, LATM, LATS, LOND, LONM, LONS, HEIGHT, X, Y, Z)
\(\operatorname{WRITE}(3,99) X, Y, Z\)
EORMAT(3(1X,E17.7))
99
CONTINUE
CONTINUE
ENDEILE(3)
REWIND(3)
RETURN
END
C
C
SUBROUTINE IM_REEIJ(IA, JA, IERAME, JERAME, IENDM, IENDN)
C
C
C
C
THIS SUBROUTINE CONSTRUCTS THE I AND J COORDINATE DATA EOR EACH ELEVATION POINT AND THEN CONVERTS THEM TO SCREEN COORDINATES AND STORES THEM IN ARRAYS IA AND JA.

IMPLICIT DOUBLE PRECISION (A-Z)
REAL OMEGA, PHI,KAPPA,X,Y,Z,X1,Y1,Z1,XO,YO
REAL XIMA, YIMA A1,A2,B1,B2,C1,C2, FOCUS
INTEGER I, J, IENDM, IENDN, IA( 2500), JA( 2500)
INTEGER IERAME, JERAME, ITOT
DATA OMEGA, PHI,KAPPA/. \(8341764,-.4563699,3.0761254 /\)
DATA XO,YO/O.000002,0.0/
DATA X1,Y1, \(21 /-2693765.9,-4304520.4,3859018.3 /\)
DATA A1, A2/20.11323959,-6.022849824/
DATA B1,B2/6.016207940,20. I0938801/
DATA C1, C2/-34954.59484,-22566.71593/
DATA EOCUS/0.153197/
C
ITOT=IENDN*IENDM
DO 10 IR=1,ITOT
\(\operatorname{READ}(3,5, E N D=20) X, Y, Z\)
        CALL PROJECT (X,Y,Z,OMEGA,PHI,KAPPA,XO,YO,X1,Y1,Z1,
                        XIMA, YIMA, EOCUS)
        CALL XY2IJ (XIMA, YIMA, I, J, A1, A2, B1, B2, C1, C2)
        IA \((I R)=I-I E R A M E\)
        \(J A(I R)=4999-J E R A M E-J\)
    CONTINUE
    REWIND (3)
    RETURN
    END
C
C

SUBROUTINE DMS2XYZ(LATD,LATM, LATS, LOND, LONM, LONS, LONS, HEIGHT, X, Y, Z)

THIS SUBROUTINE CONVERTS DMS DATA TO X,Y, AND Z GEORECTANGULAR COORDINATES.

IMPLICIT DOUBLE PRECISION (A-Z)
REAL PHI, LAMDA, N, X,Y, Z, LATD, LATM, LATS
REAL LOND, LONM, LONS,HEIGHT
PARAMETER( \(\mathrm{PI}=3.14159265358793238\) )
PARAMETER( \(\mathrm{C} 1=180 ., \mathrm{C} 2=60 ., \mathrm{C} 3=3600\).)
PARAMETER(E_SQUARE \(=0.006768658, A=6378206.4)\)
C
RADIAN=PI/CI
PHI = (LATD + LATM/C2 + LATS/C3)*RADIAN
LAMDA \(=(\) LOND + LONM \(/ C 2+\) LONS \(/ C 3) *\) RADIAN
N=A/SQRT(1-E_SQUARE*SIN(PHI)*SIN(PHI))
\(\mathrm{X}=(\mathrm{N}+\mathrm{HE}\) IGHT \() * \mathrm{COS}(\) PHI \() * \mathrm{COS}(\) LAMDA \()\)
\(Y=(N+H E I G H T) * C O S(P H I) * S I N(\) LAMDA \()\)
Z=(N*(l-E_SQUARE) +HEIGHT)*SIN(PHI)
RETURN
END

SUBROUTINE PROJECT(X,Y,Z,OMEGA, PHI, KAPPA, XO, YO, X1, Y1, Z1, XIMA, YIMA, FOCUS)

THIS SUBROUTINE CONVERTS THE X,Y,Z GEORECTANGULAR COORDINATES TO XIMA AND YIMA WHICH ARE IMAGE PLANE COORDINATES.

IMPLICIT DOUBLE PRECISION (A-Z)
REAL M11,M12,M13,M21,M22,M23,M31,M32,M33,DENOM
REAL XIMA, YIMA, X,Y,Z,OMEGA,PHI,KAPPA
REAL XO,YO,X1,Y1,Z1,EOCUS
```

M11=COS(PHI)*COS(KAPPA)
M12=COS(OMEGA)*SIN(KAPPA)+
SIN(OMEGA)*SIN(PHI)*COS(KAPPA)
M13=SIN(OMEGA)*SIN(KAPPA) -
COS(OMEGA)*SIN(PHI)*COS(KAPPA)

```
```

M21=-COS(PHI)*SIN(KAPPA)
M22=COS(OMEGA)*COS(KAPPA)-
SIN(OMEGA)*SIN(PHI)*SIN(KAPPA)
M23=SIN(OMEGA) *COS(KAPPA)+
COS(OMEGA)*SIN(PHI)*SIN(KAPPA)
M31=SIN(PHI)
M32=-SIN(OMEGA)*COS(PHI)
M33=COS(OMEGA)*COS(PHI)

```
C
DENOM=M31*(X-X1)+M32*(Y-Y1) +M33*(Z-Z1)
XIMA \(=\) XO-EOCUS* (M11* (X-XI) +M12* (Y-Y1) +M13*(Z-Z1))/DENOM
YIMA=YO-FOCUS*(M21*(X-X1)+M22*(Y-Y1)+M23*(Z-Z1))/DENOM
XIMA \(=X I M A * 1000000\)
YIMA \(=\) YIMA * 1000000
RETURN
END
C
C

SUBROUTINE XY2IJ(XIMA,YIMA, I, J, A1, A2, B1, B2, C1, C2)
THIS SUBROUTINE TAKES THE IMAGE POINTS XIMA,YIMA AND CONVERTS THEM TO I, J ORIGINAL IMAGE COORDINATES.

IMPLICIT DOUBLE PRECISION (A-Z)
REAL XIMA, YIMA, A1, A2, B1, B2, C1, C2,DENOM
INTEGER I,J
C
DENOM=A1*B2-B1*A2
\(I=((X I M A-C 1) * B 2-(Y I M A-C 2) * B 1) / D E N O M\)
\(J=-((X I M A-C 1) * A 2-(Y I M A-C 2) * A 1) / D E N O M\)
RETURN
END

SUBROUTINE IM_REFAVG(IA, JA, IMAGE, IENDM, IENDN)
C
C
C
C
C
IMPLICIT DOUBLE PRECISION (A-Z)
REAL SLOPE,YINT
BYTE IMAGE (512,512)
INTEGER IA(2500), JA(2500), IY,M,N,IGREY1, IGREY2, I, LI
INTEGER IENDM, IENDN,NODE_A,NODE_B,NODE_C,NODE_D,IR
INTEGER ICOUNT1, ICOUNT2,ITOT1,ITOT2
C
```

DO 90 IR=1,IENDN-1
IL=(IR-1)*IENDM
DO 80 N=1+IL,IENDM-I+IL
NODE_A=N
NODE_B=N+1
NODE_C=N+IENDM

```
```

 SLOPE=(JA(NODE_C) -JA(NODE_B))*1.0/
 (IA(NODE_C)-IA(NODE_B))*1.0
 YINT=1.O*JA(NODE_B)-SLOPE*IA(NODE_B)
 ITOT1=0
 ITOT2=0
 ICOUNTl=0
 ICOUNT2=0
 DO 70 M=IA(NODE_B),IA(NODE_A)
 IY=(SLOPE*M+YINT)
 DO 50 L=JA(NODE_B),IY
 ITOT1=ITOT1+IMAGE(M, L)
 ICOUNT1=ICOUNT1+1
 CONTINUE
 IE(M. LT. IA(NODE_A))THEN
 DO 60 L=IY+1,JA(NODE_C)
 ITOT2=ITOT2+IMAGE(M,L)
 I COUNT2=ICOUNT2+1
 CONTINUE
 END IE
 CONTINUE
 LI=(N-(IR-1))*2
 IGREY1=ITOT1/ICOUNT1
 IGREY2=ITOT2/ICOUNT2
 NODE_D=NODE_C+1
 WRITE(20, REC=L1-1)NODE_A,NODE_B,NODE_C,IGREY1
 WRITE(20,REC=L1)NODE_B,NODE_D,NODE_C,IGREY2
 CONTINUE
 CONTINUE
 RETURN
 END
 C
C
SUBROUTINE EXT_ORIEN(M11,M12,M13,M21,M22,M23,
M31,M32,M33, IENDM, IENDN')
C THIS ROUTINE DETERMINES THE M MATRIX PARAMETERS
FOR ROTATION OE THE IMAGE PLANE TO DESIRED
LOCATION FOR VIEWING IN THE SYNTHESIZED IMAGE.
IMPLICIT DOUBLE PRECISION (A-Z)
REAL MAGN_X,MAGN_Y,MAGN_Z,X,Y,Z
REAL X_CORD (2500), Y_CORD (2500), Z_CORD (2500)
REAL X_VECX,X_VECY,X_VECZ,Y_VECX,Y_VECY,Y_VECZ
REAL Z_VECX,Z_VECY,Z_VECZ
INTEGER IENDM, IENDN, ITOT,IP,IR
ITOT=IENDM*IENDN
DO 10 IR=1,ITOT
$\operatorname{READ}(3,5, E N D=20) X, Y, Z$
X_CORD (IR)=X
Y_CORD (IR) $=Y$
Z_CORD (IR)=Z
EORMAT(3(1X,F17.7))

```

CONTINUE
    Y_VECX=-(X_CORD(1))
    Y_VECY=-(Y_CORD(1))
    Y_VECZ=-(Z_CORD(1))
    I \(\mathrm{P}=\mathrm{ITOT}-\mathrm{IENDM}+1\)
    Z_VECX=X_CORD( 1 )-X_CORD (IP)
    Z_VECY=Y_CORD(I)-Y_CORD (IP)
    Z_VECZ=Z_CORD(1)-Z_CORD (IP)
        USE THE CROSS PRODUCT OF Y CROSS \(Z\) TO OBTAIN
        THE X VECTOR.
    X_VECX=( (Y_VECY*Z_VECZ)-(Y_VECZ*Z_VECY))
    X_VECY=((Y_VECZ*Z_VECX)-(Y_VECX*Z_VECZ))
    X_VECZ=( (Y_VECX*Z_VECY)-(Y_VECY*Z_VECX))
    MAGN_Z=SQRT( (Z_VECX**2) + (Z_VECY**2) + (Z_VECZ**2))
    MAGN_X=SQRT( (X_VECX**2) + (X_VECY**2) + (X_VECZ**2))
    MAGN_Y=SQRT((Y_VECX**2)+(Y_VECY**2)+(Y_VECZ**2))
    M11=X_VECX/MAGN_X
    M12=X_VECY/MAGN_X
    M13=X_VECZ/MAGN_X
    M21=Y_VECX/MAGN_Y
    M22=Y_VECY/MAGN_Y
    M23=Y_VECZ/MAGN_Y
    M31=Z_VECX/MAGN_Z
    M32=Z_VECY/MAGN_Z
    M33=Z_VECZ/MAGN_Z
    RETURN
    END
C
C
    SUBROUTINE AFEIN(A1,A2,B1,B2,C1,C2)
        IMPLICIT DOUBLE PRECISION(A-Z)
            REAL A1,A2,B1,B2,C1,C2,XIMA_MAX,YIMA_MAX, I_MAX,J_MAX
            DATA I_MAX,J_MAX/512.0,512.0/
C
XIMA_MAX=1600.0
YIMA_MAX=1600.0
CI=XIMA_MAX
\(\mathrm{C} 2=0.0\)
\(A 2=0.0\)
\(\mathrm{Bl}=0.0\)
AI=-XIMA_MAX/(I_MAX*1.0)
\(B 2=Y I M A \_M A X /\left(J \_M A X * 1.0\right)\)
RETURN
END
```

THIS SUBROUTINE CALCULATES THE NEW OBSERVER X1,Y1,Z1 LOCATION EROM DESIRED LAT. AND LONG. INPUTS AS WELL AS PROVIDE THE FOCAL LENGTH.

```

\section*{IMPLICIT DOUBLE PRECISION (A-Z)}

REAL LATD, LATM, LATS, LOND, LONM, LONS, HEIGHT
REAL X1,Y1,Z1,X,Y,Z,EOCUS
LATD=37.0
WRITE( \(6, *\) )'INPUT OBSERVER LATITUDE IN-MINUTES(REAL): '
\(\operatorname{READ}(5,5)\) LATM
WRITE \((6, *)^{\prime} \quad\)-SECONDS(REAL): '
\(\operatorname{READ}(5,5)\) LATS
LOND \(=-122.0\)
WRITE(6,*)'INPUT OBSERVER LONGITUDE IN-MINUTES(REAL):'
\(\operatorname{READ}(5,5)\) LONM
WRITE ( \(6, *\) )' -SECONDS(REAL): '
\(\operatorname{READ}(5,5)\) LONS
EORMAT(E5.1)
WRITE (6,*)'INPUT OBSERVER HEIGHT-METERS(REAL):
\(\operatorname{READ}(5,10)\) HEIGHT
EORMAT(E6.1)
EOCUS \(=0.015\)
CALL DMS2XYZ(LATD, LATM, LATS, LOND, LONM, LONS,HEIGHT, X,Y,Z)
\(\mathrm{XI}=\mathrm{X}\)
\(Y 1=Y\)
Z1=2
RETURN
END

SUBROUTINE NEW_IJ (X1,Y1, 21, FOCUS,A1, A \(2, B 1, B 2, C 1, C 2\), IENDM, IENDN, IA, JA)

THIS SUBROUTINE COMPUTES THE NEW IA AND JA SCREEN COORDINATES EROM THE GIVEN OBSERVER LOCATION.

IMPLICIT DOUBLE PRECISION (A-Z)
REAL X1,Y1, Z1, FOCUS,M11,M12,M13,M21,M22,M23,M31
REAL XO,YO,X,Y,Z,XIMA,YIMA,A1,A2,B1,B2,C1,C2
REAL M32,M33,DENOM
INTEGER IENDM, IENDN, ITOT,IR, IA (2500), JA (2500), I, J
DATA XO,YO/O.O,O.O/
ITOT=IENDN*IENDM
DO 10 IR=1, 2500
\(I A(I R)=0\)
\(J A(I R)=0\)
CONTINUE
CAEL EXT_ORIEN(M11,M12,M13,M21,M22,M23,M31,M32,M33, IENDM, IENDN)
```

 DO 20 IR=1,ITOT
 READ(3,15,END=30)X,Y,Z
 EORMAT(3(1X,E17.7))
 DENOM=M31*(X-X1)+M32*(Y-Y1)+M33*(Z-Z1)
 XIMA=XO-FOCUS*(M11*(X-X1)+M12*(Y-Y1)+M13*(Z-Z1))/
 DENCM
 YIMA=YO-FOCUS*(M21*(X-X1)+M22*(Y-Y1)+M23*(Z-Z1))/
 DENOM
 XIMA=XIMA*1000000.0
 YIMA=YIMA*1000000.0
 CALL XY2IJ(XIMA,YIMA,I,J,A1,A2,B1,B2,C1,C2)
 IA(IR)=I
 JA(IR)=J
 CONTINUE
 20
 30 REWIND(3)
 RETURN
 END
 C
 C
 C
 C
 C
 C
 C
 IMPLICIT DOUBLE PRECISION(A-Z)
 REAL X1,Y1,Z1,DEPTH(2500)
 INTEGER IENDM,IENDN,IR,ITOT
 C
CONHN
REWIND(3)
RETURN
END
C
SUBROUTINE EILL(IA, JA, DEPTH, IMAGE, IENDM, IENDN)
THIS SUBROUTINE DETERMINES THE HIDDEN SUREACES AND CONSTRUCTS THE TRANSLATED IMAGE. A Z_BUEEER IS USED TO HOLD THE COMPUTED DEPTHS EROM THE OBSERVER TO THE GEOGRAPHIC POSITION. A PLANE EQUATION IS CONSTRUCTED EROM THREE ELEV. POINTS. THIS EQUATION IS USED TO DETERMINE THE DEPTH OE ALL POINTS WITHIN THE PLANE.
IMPLICIT DOUBLE PRECISION(A-Z)
BYTE IMAGE(512,512)
REAL DEPTH (2500), Z_BUEF $(512,512), X 1, X 2, X 3, Y 1, Y 2, Y 3$
REAL Z1, Z2, Z3, Z_DPTH,C11,C12,C13,C21,C22,C23,C31

```

REAL C32,C33,DET,A_COEE,B_COEE,C_COEE
INTEGER IGREY, NODE_A, NODE_B,NODE_C, I_MIN, I_MAX, J_MIN INTEGER J_MAX, ERAME(512,512), IA(2500), JA( 2500), IENDM INTEGER IENDN,IR,I,J,K,L,IPLANES

EIRST DETERMINE THE NUMBER OE PLANES AND INITIALIZE THE Z_BUEFER AND IMAGE TO 0.
```

IPLANES=((IENDM-1)*2)*(IENDN-1)

```

DO \(20 \mathrm{~K}=1,512\)
DO \(10 \mathrm{~L}=1,512\)
\(\operatorname{IMAGE}(L, K)=0\)
Z_BUFE \((L, K)=0\)
CONTINUE
CONTINUE
DETERMINE THE COEEEICIENTS OF THE PLANE EQUATION EROM THE THREE ELEVATION POINTS.

DO 70 IR=1, IPLANES
READ ( \(20, R E C=I R) N O D E \_A, N O D E \_B, N O D E \_C, I G R E Y\)
XI=IA(NODE_A)
Yl=JA(NODE_A)
Z1=DEPTH(NODE_A)
X2=IA(NODE_B)
Y2=JA(NODE_B)
Z2=DEPTH(NODE_B)
X3=IA(NODE_C)
Y3=JA(NODE_C)
Z3=DEPTH(NODE_C)
DETERMINE THE COFACTOR ELEMENTS
C11=( \((Y 2 * Z 3)-(Y 3 * Z 2))\)
C12 \(=-((X 2 * 23)-(X 3 * 22))\)
C13=( (X2*Y3)-(X3*Y2))
C21=-( (Y1*Z3)-(Y3*Z1))
C22 \(=((\mathrm{X1}\) *Z3)-(X3*Z1))
C23 \(=-((\mathrm{XI} * Y 3)-(X 3 * Y 1))\)
C31=( (Y1*Z2)-(Y2*Z1))
C32 \(=-((\mathrm{X} 1 * 22)-(\mathrm{X} 2 * 21))\)
C33 \(=((X 1 * Y 2)-(X 2 * Y 1))\)
CALCULATE THE DETERMINANT
\[
\mathrm{DET}=(\mathrm{X} 1 * \mathrm{Cl1})+(\mathrm{Y} 1 * \mathrm{Cl} 2)+(\mathrm{Z1*C13)}
\]

THE COEFEICIENTS ARE DETERMINED EROM MULTIPLYING THE reciprocal of the determenant with the
transpose of the cofactors called the adjoint.

> A_COEE \(=-((\mathrm{C} 11+\mathrm{C} 21+\mathrm{C} 31) / \mathrm{DET})\)
> \(\mathrm{B}-C O E E=-((\mathrm{C} 12+\mathrm{C} 22+\mathrm{C} 32) / \mathrm{DET})\)
> \(\mathrm{C}-\mathrm{COEE}=-((\mathrm{C} 13+\mathrm{C} 23+\mathrm{C} 33) / \mathrm{DET})\)
> \(\mathrm{IE}(\mathrm{C}=\mathrm{COEE}, \mathrm{EQ} \cdot 0.0) \mathrm{GOTO} 70\)

DETERMINE THE MAXIMUM AND MINIMUM VALUES TO TEST
```

I_MAX=MAX(IA(NODE_A),IA(NODE_B),IA(NODE_C))
I_MIN=MIN(IA(NODE_A),IA(NODE_B),IA(NODE_C))
J_MAX=MAX(JA(NODE_A),JA(NODE_B),JA(NODE_C))
J_MIN=MIN(JA(NODE_A),JA(NODE_B),JA(NODE_C))
IF(I_MIN.LT.I.OR. I_MAX.GT. 512)GOTO 70
IE(J_MIN.LT.I.OR.J_MAX.GT.512)GOTO 70

```

\section*{CLEAR THE REEERENCE ERAME BUEEER AND CALL THE} ERAME EILL SUBROUTINE.

DO 40 L=I_MIN, I_MAX
DO \(30 \mathrm{~K}=\mathrm{J}_{-}\)MIN, J_MAX
\(\operatorname{ERAME}(L, \bar{K})=0\)
CONTINUE
CONTINUE
CALL ERAME_EIL(NODE_A,NODE_B,NODE_C, ERAME,IA,JA, J_MAX, J_MIN)
DO 60 J=J_MIN, J_MAX
DO 50 I=I_MIN, I_MAX IE ( \(\operatorname{IRAME}(I, J) \cdot \overline{E Q} \cdot I)\) THEN Z_DPTH=-(1+(A_COEF*I)+(B_COEF*J))/C_COEF \(\operatorname{IF}\left(Z \_\operatorname{BUFF}(I, J) . E Q . O . O . O R . Z \_D P T H\right.\). LT. \(\left.\bar{Z} \_\operatorname{BUEF}(I, J)\right) T H E N\) Z_BUEF \((I, J)=Z \_D P T H\) IMAGE \((I, J)=I G R E Y\)
END IE END IE
CONTINUE
CONTINUE
CONTINUE
DO \(90 \mathrm{~J}=1,512\)
WRITE(21, REC=J) (IMAGE(I, J), I=1,512)
CONTINUE
RETURN
END

SUBROUTINE FRAME_EIL(NODE_A,NODE_B,NODE_C, FRAME, IA, JA, J_MAX, J_MIN)

THIS SUBROUTINE CONSTRUCTS AN EDGE LIST EROM THE
THREE NODES PASSED IN THE ROUTINE. THESE EDGES
ARE USED IN A POLYGON EILL ROUTINE USEING A ERAME BUEEER AND Y_BUCKET
IMPLICIT DOUBLE PRECISION(A-Z)
REAL I_INCPT,DELTA_I,DELTA_J,AEL (3,4)
REAL XNODE1,XNODE2,DX
INTEGER NODE_A, NODE_B, NODE_C, \(\operatorname{ERAME}(512,512), \operatorname{IA}(2500)\)
INTEGER JA(2500), J_MAX, J_MIN,NODE(4), IS, NODE1, NODE2
INTEGER N_HIGH, N_LOW, IT, IU, J_BUCKET(512), IR, II, I2
INTEGER ICNT,LCNT
C
```

 DO 10 IS=1,512
 J_BUCKET(IS)=0
 CONTINUE
 DO 30 IS=1,3
 DO 20 IR=1,4
 AEL(IS,IR)=0.0
 CONTINUE
 CONTINUE
 NODE(1)=NODE_A
 NODE(2)=NODE_B
 NODE(3)=NODE_C
 NODE(4)=NODE_A
 DO \O IS=1,3
 NODE1=NODE(IS)
 NODE2=NODE(IS+1)
 IE(JA(NODE1).GE.JA(NODE2))THEN
 N_HIGH=NODEI
 N_LOW=NODE2
 ELSE
 N_HIGH=NODE2
 N_LOW=NODE1
 END IE
 I_INCPT=IA(N_HIGH)
 DELTA_J=(JA(N_HIGH)-JA(N_LOW))
 IF(DELTA_J.EQ.O.O)THEN
 GOTO 40
 ELSE
 DELTA_I=-(IA(N_HIGH)-IA(N_LOW))/DELTA_J
 END IE
 IT=JA(N_HIGH)
 IU=J_BUCKET(IT)
 IE(IU.EQ.O)THEN
 J_BUCKET(IT)=IS
 ELSE
 AEL(IU,4)=IS
 END IE
 AEL(IS,1)=I_INCPT
 AEL(IS,2)=DELTA_I
 AEL(IS,3)=DELTA_J
 CONTINUE
IT=J_BUCKET(J_MAX)
IU=INT(AEL(IT,4))
XNODEI=AEL(IT,1)
XNODE2=AEL(IU,1)
DX=XNODE1-XNODE2
IE(DX.LE.O.O)THEN
II=NINT(XNODE1)
I2=NINT(XNODE2)
ELSE
I1=NINT(XNODE2)
I2=NINT(XNODE1)
END IE
DO 50 IR=I1,I2

```

ERAME (IR, J_MAX) \(=1\)
50
CONTINUE
\[
A E L(I T, 3)=A E L(I T, 3)-1.0
\]
\[
A E L(I U, 3)=\operatorname{AEL}(I U, 3)-1.0
\]
ICNT=J_MAX-1
LCNT=JMIN
\[
\text { DO } 70 \text { IS =ICNT, LCNT, }-1
\]
IE (J_BUCKET( I S ). EQ. O)THEN
XNODE1=XNODE1+AEL(IT,2)
\[
\text { XNODE2 =XNODE } 2+\text { AEL }(I U, 2)
\]
ELSE IE(AEL(IT, 3). LE.O.O)THEN IT=J_BUCKET(IS) XNODE1=AEL (IT, 1) XNODE2 =XNODE2 + AEL (IU, 2) ELSE
                IU=J_BUCKET( IS )
                    XNODE1=XNODE1+AEL(IT,2)
                        XNODE2=AEL(IU,1)

\section*{END IF}

DX=XNODE1-XNODE 2
IF (DX. LE. O. O) THEN
II=NINT(XNODE1)
I2 \(2=\mathrm{NINT}(\mathrm{XNODE} 2)\)
ELSE
I 1=NINT(XNODE2)
I2 \(=\) NINT(XNODE1)
END IE
DO 60 IR=II, I2
ERAME (IR,IS \()=1\)
60 CONTINUE
AEL (IT, 3) =AEL (IT, 3)-1.0
\(\operatorname{AEL}(I U, 3)=A E L(I U, 3)-1.0\)
70
CONTINUE
RETURN
END
C
C
C
1. Quam, Lynn H., "The Terrain-Calc System", Proc. SAIC-85/1149, pp.327-330, Dec. 1985.
2. Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill, 1985.
3. Moffitt, Francis H., Mikhail, Edward M., Photogrammetru, 3rd Edition, Harper-Row, 1980.
4. Christiansen, H., Stephenson, M., MOUIE.BYU, Community Press, Pravo, Utah, 1986.
5. Ihomas, G., Finney, R., Calculus and Analutic Geometru, Addison-Wesley Publishing Company, 1984.

Na. Capies
1. Defense Iechnical Information Center ..... 2 Cameran Station
Alexandria, Urginia 22304-5145
2. Library, Code 0142 ..... 2Naval Postgraduate SchoolMonterey, California 93943-5002
3. Chairman, Code 62 ..... 1Computer and Electrical Eng. DeptNaval Postgraduate SchoolMonterey, Califarnia 93943
4. Professar Chin-Hwa Lee ..... 5
Code 62 Le
Computer and Electrical Eng. Dept. Naval Postgraduate School Monterey, California 93943
5. Professar Mitchell L. Catton ..... 1
Code 62 Cc
Computer and Electrical Eng. Dept.Naval Pastgraduate School
Monterey, Califarnia 93943
6. LI. Leland G. Coleman ..... 2cio Edward Griffin
P.O. 541
Canyan City, Oregon 97820

```

The5}\mathrm{ Thesis
C53 C5343 Coleman
c. }
Three-dimensional image
generation from an aerial
photograph.

```
        17 APR 89
        \(\cdots 13806\)
    Thesis
    C5343 Coleman
    c. 1 Three-dimensional image
        generation
photograph.```


[^0]:    Fig. 3.12 Synthesized Image 己

